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1 The Birthday Paradox

Suppose you have n people in a room, none of whom were born on February 29th. What

is the likelihood that two of them will share a birthday?

The answer is easy to calculate, and may surprise you. To do the calculation, consider

each person in order (any order you want, just be consistent). The �rst person might have

a birthday on any of the 365 days of the year without con�ict, so we have a 365/365 chance

of no con�ict.

The second person has 364 days his birthday might be to avoid a con�ict, so he has a

364/365 chance of no con�ict.

The third person has 363 days to choose from, if there is to be no con�ict, and so on.

We see that the chance of there not being a con�ict is

365
365
× 364

365
× 363

365
× · · · × (365− n+ 1)

365
=

365!
365n(365− n)!

and the chance of there being a con�ict is one minus this quantity. We hack together some

code to check:

(defun fact (n) (if (zerop n) 1 (* n (fact (1- n)))))

(defun birthday (n) (/ (fact 365) (fact (- 365 n)) (expt 365 n)))

(- 1.0 (birthday 1))

(- 1.0 (birthday 5))

(- 1.0 (birthday 10))

;;; and so on

With one person, the chance of collision is 0, as expected. With two people, it is 1/365, or

0.0027, also as expected. But it grows quickly:

n Probability of collision

5 0.027135551

10 0.11694819

20 0.4114384

30 0.70631623

50 0.9703736
Wow! With only 30 people, there is a 7 in 10 chance of a collision. With 50 people, the

chances grow to 97%.

2 Bitcoin Addresses

Now, what are the chances that two people will wind up using the same bitcoin address?

There are 2160 bitcoin addresses in the universe, which is a fair bit larger than the 365
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birthdays in the universe, but the problem is essentially the same. Our formula becomes

chance of collision = 1− 2160!
2160n(2160 − n)!

By inspection, we see that the chances are going to be zero for any n less than a million or

so, and we have no hope of calculating with any larger n. So what can we do?

Well, thanks to famous mathematicians Abraham de Moivre and James Stirling, we

have Stirling's formula, an easy-to-compute approximation to the factorial function. It

looks like

n! ≈
√

2πn
(n
e

)n

We use this as

2160!
2160n(2160 − n)!

≈ 2−160n (2160/e)2
160

((2160 − n)/e)2160−n

= 2−160ne−n 2160×2160

(2160 − n)2160−n

= e−n 2160×(2160−n)

(2160 − n)2160−n

= e−n

(
2160

2160 − n

)2160−n

= exp
[
(2160 − n) log

(
2160

2160 − n

)
− n

]
So our chance of collision is

1− exp
[
(2160 − n) log

(
2160

2160 − n

)
− n

]
When will this exceed some threshold ε? We solve

ε = 1− exp
[
(2160 − n) log

(
2160

2160 − n

)
− n

]
If n is smaller than 2159 or so, the quantity inside the logarithm will be very close to 1,

so we do a Taylor expansion about 1 to get a second-order approximation. (Notice that

(1 − 2160/(2160 − n)) is bounded between 0 and 1, so our error is on the order O(1) in n.

But that doesn't really tell us anything.)

ε = 1− exp

[
(2160 − n)

((
2160

2160 − n
− 1
)
− 1

2

(
2160

2160 − n
− 1
)2
)
− n

]

= 1− exp

[
(2160 − n)

((
n

2160 − n

)
− 1

2

(
n

2160 − n

)2
)
− n

]

= 1− exp
[
−1

2
n2

2160 − n

]
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Okay, so

log(1− ε) = −1
2

n2

2160 − n
+

1
3

n3

(2160 − n)2

n2 − 2n log(1− ε) + 2161 log(1− ε) = 0

n = log(1− ε)±
√

[log(1− ε)]2 − 2161 log(1− ε)

It's obvious that the second term will dominate, so we have our estimate:

n =
√

[log(1− ε)]2 − 2161 log(1− ε)

For ε = 50%, this gives n = 1.41× 1024. For ε = 90%, we get roughly twice this amount.

3 Should I be worried?

Using this result, we calculate that for a 0.1% probability of collision, we would need

5.4 × 1022 addresses in existence. For a 99.9999% chance, we would need 6.35 × 1024

addresses.

So, even if there were 1022 bitcoin addresses generated, a collision simply will not happen.

But if there were 1025 addresses generated, a collision absolutely would happen.

Should we worry about this? No, for four independent reasons.

• The chance of getting a speci�c collision, say, a collision with one of your addresses,

is still 1 in 2160 or 1 in 1048. So even if you've got a million million million addresses,

nobody has a chance of colliding with you.

• At the time of this writing, there are less than 107 addresses in use in the network.

So anyone with 1025 addresses would only be colliding their own addresses.

• Each address takes around 100 bytes to store. (Actually about half that, but we only

care about orders of magnitude.) So for the network to support 1025 addresses, it

would take 10 million million terabytes of storage just to record them.

This is not even touching the problem of searching such a huge data store.

Further, according to sipa, if the current mining network (which is at 25 THash, and

the most powerful computing network in the history of the world) were switched over

to address generation, the network could generate 2.5 × 1012 addresses per second

(one address generation corresponding to roughly 10 hashes). At that rate, it would

take 127,000 years to get so many addresses. It is debatable whether homo sapiens

sapiens has walked the earth for so long.

• With 21 million bitcoins ever existing, and 8 decimal places of divisibility, at most

2.1× 1014 can possibly have money on them at once.

But in a space of 1024 addresses, this means that only one in 1012 addresses could

possibly have money on them. So an attacker, after doing the physically impossible a
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trillion times over, has only a one in a trillion chance of getting even one satoshi out

of it.
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