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Causality Implies the Lorentz Group 

E. C. ZEEMAN 

lnstitut des Hautes Etudes Scientifiques, Bures-sur-Yvette, Seine et Oise, France 
(Received 30 July 1963) 

Causality is represented by a partial ordering on Minkowski space, and the group of all auto­
morphisms that preserve this partial ordering is shown to be generated by the inhomogeneous Lorentz 
group and dilatations. 

LET M denote Minkowski space, the real 4-
dimensional space-time continuum of special 

relativity, and let Q denote the characteristic 
quadratic form on M, 

Q(x) 2 2 2 2 = Xo - Xl - X2 - Xa, 

There is a partial ordering on M given by X < y 
if an event at x can influence an event at y; more 
precisely, x<y if y-x is a time vector, Q(y-x»O, 
oriented towards the future, Xo < Yo. Let f : M --? M 
be a function that is a one-to-one mapping (we 
make no assumptions that f is linear or continuous). 
We call f a causal automorphism if both f and r 1 

preserve the partial ordering; in other words, 

x < y <=> fx < fy, all x, y E M. 

The causal automorphisms form a group, which 
we call the causality group. 

Let G be the group generated by (i) the ortho­
chronous Lorentz group (linear maps of M that 
leave Q invariant, and preserve time orientation, 
but possibly reverse space orientation), (ii) transla­
tions of M, and (iii) dilatations of M (multiplication 
by a scalar). 

Theorem. The causality group = G. 

Remark 1. The significance of the theorem is that 
if we interpret the principle of causality mathe­
matically as the set M together with the partial 
ordering, then the inhomogeneous Lorentz group 
appears naturally (with dila ta tions and space reversal) 
as the symmetry group of M. Therefore the basic 
invariants of physics, which are the representations 
of the inhomogeneous Lorentz group, follow nat­
ually from the single principle of causality. 

Remark 2. It is easy to see that G is contained 
in the causality group, since the generators of G 
preserve the partial ordering. The converse is not 
obvious at first sight, because there seems no 

reason why a causal automorphism should be linear 
or even continuous. In fact, the result depends 
essentially upon space being more than I-dimen­
sional. If space were I-dimensional then the causality 
group would be much larger than G, and the general 
causal automorphism would map the space and 
time axes into curved lines, as is shown by the 
example below. Thus the typical 2-dimensional 
picture of Minkowski space to be found in most 
textbooks is misleading. 

Remark 3. The condition for f to be a causal 
automorphism is a global condition, but is equivalent 
(by an elementary compactness argument using 
the transitivity of <) to the following local condi­
tion: given x E M, then there is a neighborhood 
N of x such that 

y < z <=> fy < fz, all y, zEN. 

Intuitively this means we need only think of the 
principle of causality acting in our laboratories for 
a few seconds, rather than between distant galaxies 
forever, and still we are able to deduce the Lorentz 
group. 

Remark 4. There is another relation on M given 
by x <. y if light can go from x to y; more precisely 
x <. y if y - x is a light vector, Q(y - x) = 0, 
oriented towards the future, Xo < Yo. The relation 
x <. y is not a partial ordering because it is not 
transitive, 

x <. y <. z :::::j::} x <. z. 

We shall show in Lemma I that, in the definition 
of causal automorphism, it does not matter whether 
we use < or <. (or both). Intuitively this means 
that the Lorentz group can be deduced equally 
well either from causality between heavy particles, 
or from causality between photons, or from both. 
Remark 3 also holds for < ., although the argument 
is slightly more complicated due to the lack of 
transitivity. 
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Remark 5. In Remarks 2 and 3, when referring 
to the Hcontinuity" of f or the Hneighborhood" 
of x, we have implicitly assumed a topology on M, 
although for the proof of the theorem we assume 
no topology. It is customary to think of M as having 
the topology of real 4-dimensional Euclidean space, 
but there are reasons why this is wrong. In particular: 

(i) Euclidean topology is locally homogeneous 
whereas M is not; every point has its associated light 
cone separating space vectors from time vectors. 

(ii) The group of all homeomorphisms of Eu­
clidean space is vast, and of no physical significance. 

In a subsequent paperl we suggest alternative 
topologies for M, which are not homogeneous, and 
have the property that any homeomorphism maps 
light cones to light cones. Therefore any home­
omorphism preserves or reverses the relation <', 
and so the group of all homeomorphisms of M with 
such a topology will be the double cover of G. 
Consequently, the topology is physically significant 
because it implies the Lorentz group. 

The existence of such topologies on Minkowski 
space suggest the possibility of similar topologies 
on the inhomogeneous Lorentz group, finer than 
the Lie-group topology. Any representation with the 
Lie-group topology would a fortiori be a representa­
tion with a finer topology, but not necessarily 
conversely. This raises the question: are there some 
new representations of the inhomogeneous Lorentz 
group? 

Example. 

Let K denote 2-dimensional Minkowski space 
with characteristic quadratic form 

Q(x) = x~ - x~, 

Choose new coordinates 

Yo = Xo - Xl, 

Let f 0, f I : R -+ R be two arbitrary nonlinear orienta­
tion-preserving homeomorphisms of the real line 
onto itself. Define f : K -+ K by 

f(yo, YI) = (foYo, fIYI)' 

Then f is a causal automorphism, but f EE G because 
f is nonlinear. In general, the images of the space 
and time axes will not be straight lines. 

Lemma 1.' Let f : M -+ M be a function that is 
a one-to-one mapping. Then f, r l preserve the partial 
ordering < if and only if they preserve the relation < '. 

1 E. C. Zeeman, "The topology of Minkowski space" 
(to be published). 

Proof. If X < Y implies rlx < rly, then x « y 
implies fx « fy. Therefore if f, r l preserve <, 
then f preserves < and <t. Now 

x <.y¢:::?{x«y 
y < z => x < z. 

Therefore if f preserves < and «, then f preserves 
< '. Therefore if f, r l preserve <, then f, r 1 

preserve <'. Conversely, 

x <y¢:::?{x«.y 
x <. z <. y, forsome z. 

Therefore if f preserves < . and « ., then f preserves 
<, and so if f, r l preserve < ., then f, r l preserve <. 

Notation. 

If x E M, let C" denote the light cone through x, 

C" = Iy; x <. y or x = y or y <. x). 

If x <. y, we call the line through x and y a light 
ray and denote it by RM • We deduce 

R".II = C .. (\ CI/' 

Lemma 2. A causal automorphism maps light rays 
to light rays. 

Proof: Let f be a causal automorphism. By 
Lemma 1, f and r l preserve <', and so fC", = CIa. 
Therefore if X <. y, 

fR",1I = f(C" (\ CII) = C,,, (\ C'II = R's,'II' 

Lemma 3. A causal automorphism maps parallel 
light rays to parallel light rays. 

Proof: Let aI, a2 be parallel light rays, and let 
P be the plane through them. There are two eases 
according to whether or not P is a tangent to all 
the light cones with vertex in P. 

Case (1). Suppose P is not a tangent (this is the 
usual case). Then P contains two families lal, Ib} 
of light rays, where {a} consists of all lines parallel 
to al (and a2), and {b} consists of all lines parallel 
to another direction. If X E P, then the light cone 
with vertex x meets P in the two light rays through 
x, one from each family. 

Let f be a causal automorphism. The images 
{fa}, {fb} are families of lines with the property 
that each fa meets each fb, but no two of anyone 
family meet. There are two possibilities; (i) fal and 
fa2 are coplanar, or (ii) they are not. We shall 
show that (ii) leads to a contradiction. For if fal, fa: 
are not coplanar they lie in a 3-dimensional sub­
space S, say, of M. Then each tb C S, because 
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it meets fal and fa2, and therefore each fa C S. 
Therefore the two families are generators of a 
nondegenerate quadric surface in S. If this quadric 
surface is a hyperboloid (meeting S", in a conic, 
where S", denotes the plane at infinity), then each 
fa is parallel to some fb (the unique fb through 
fa n S"'), contradicting that fa meets fb (in a finite 
point). Alternatively, if the quadric is a paraboloid 
(meeting S., in two lines), then the directions of 
{fa} are parallel to all the lines in a plane (which 
meets S'" in one of the lines). But all light rays 
are parallel to the rays in a single light cone (which 
meets M a> in a sphere), and so any plane contains 
at most two lines parallel to light rays (through 
the points in M", where the sphere meets the line 
in S'" eM.,), and so again we have a contradiction. 

Therefore fal, fa2 must be coplanar, and, since 
they do not meet, must be parallel. 

Case (2). Suppose P is a tangent to all light 
cones with vertex in P (this is the exceptional case). 
The argument of Case (1) breaks down because 
P has the property that it contains only one family 
of light rays, namely all the lines parallel to al 

and a2. The planes through al with this property 
span a 3-dimensional subspace A 1, say, of M (the 
tangent prime to the light cones through a l ). 

Similarly the planes through a2 with the property 
span A 2. Choose a3 parallel to al and a2, and not 
in Al IJ A 2. Then by Case (1), al and a2 are both 
parallel to a3 , and hence parallel to each other. 
The proof of Lemma 3 is complete. 

Remark. So far, everything we have done applies 
to the 2-dimensional example above. As yet we 
have not proved that f maps each light ray linearly, 
nor have we proved that f maps straight lines other 
than light rays into straight lines. We prove this 
in the next lemma, using the fact that the dimension 
of space is greater than 1. 

Lemma 4. A causal automorphism maps each light 
ray linearly. 

Proof: Suppose a, a l are parallel light rays, as 
in Case (1) of Lemma 3. The family {b} of parallel 
light rays meeting a and a l determine a linear 
map gl : a ~ ai, and if f is a causal automorphism 
the image family {fb } determine a linear map 
el : fa ~ fal such that the diagram 

is commutative. If a2 is also parallel to ai, we can 
define similar maps g2, e2 for the pair ai, a2, and 
maps ga, ea for the pair a2, a, provided neither 
of the pairs is exceptional as in Case (2) of Lemma 3. 
Composing the three diagrams gives a commutative 
diagram 

f 
a~fa 

1 g f le 
a~fa 

where g = g3g2g1 is a translation of a, and e = e3e2el 
is a translation of fa (g, e are translations because 
they are compositions of parallel displacements). 

If Minkowski space were 2-dimensional, then any 
such translations would have to be the identity. 
But in higher dimensions-and this is where the 
difference is essential-we claim that any given 
translation g of a can be obtained in this manner. 
It suffices to construct an arbitrary translation on 
one particular light ray, for then the result will 
be true for all light rays since G is transitive on the 
set of all light rays. 

Let X= (0,0,0,0), y= (0, -t, 0, t), z= (0,0,0, 2t) 
and x* = (0, 0, t, t). Let a, ai, a2 be the light rays 
through x, y, z, respectively, parallel to the direction 
[0,0, 1, 1]. 
Then 

x~y~z~x*. 
C11 till tis 

Therefore gx = x*, and the given translation g 
can be obtained by suitable choice of the parameter t. 

Let r, s be coordinates chosen on a, fa such that 
f(O) = O. Suppose that when g is the translation 
r ~ r + t, then e (which is uniquely determined by g) 
is the translation s ~ s + u, where u = u(t). Then 

fer + t) = fg(r) = ef(r) = fer) + u(t), 

for all r, t. Putting r = 0, we have 

f(t) = u(t), 

and so 

fer + t) = fer) + f(t). 
Therefore by induction f(nt) = nf(t), for positive 
and negative integers n. If m is also an integer, 
then nf[(m/n)t] = f(mt) = mf(t), and So 

fCrt) = rf( t) 

for r rational. But the last equation is also true 
for r real, because f preserves <', and so is order-
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preserving on each light ray. Hence f is linear on 
the light ray, and Lemma 4 is proved. 

Lemma 5. A causal automorphism maps parallel 
equal intervals on light rays to parallel equal intervals. 

Proof: Parallel light rays must be mapped with 
the same linear expansion because the family of 
parallel light rays meeting them both also remains 
parallel. (In the exceptional case use a third ray, 
as in the proof of Lemma 3.) Therefore equal 
intervals are mapped with the same linear expansion 
onto equal intervals. 

Proof of the Theorem: We are given a causal 
automorphism f : M ~ M. We can assume the 
f keeps the origin fixed, by first composing f with a 
translation if necessary. Choose four linearly in­
dependent vectors Vl, V2, V3, V4 directed along four 
light rays through the origin: these form a base 
for the vector-space structure of M, and so an 
arbitrary vector x E M can be written 

x = L XiVi, Xi scalar. 

Let g : M ~ M be the linear map given by 

gx = Xi(fVi)' 

We shall show that f is linear by proving that f = g. 
For each i, 1 ::; i ::; 4, let M i denote the i-dimen­
sional vector subspace spanned by Vi' 1 ::; j ::; i. 
We shall show that f = g on M, by induction on i. 

The induction starts with i = 1 by Lemma 4, and 
finishes with i = 4. Assume the induction for i-I. 
Given x EM" write x = y + X,V" where y E M ,-1' 

Then the interval from y to x is parallel and equal 
in length to the vector XiV,. By Lemma 5 the interval 
from fy to fx is parallel and equal in length to 
f(XiV,). Therefore 

fx = fy + f(XiV,) 

= gy + g(X,Vi), by.induction and by Lemma 4, 

= gx, because g is linear. 

This completes the inductive step, and the proof 
that f is linear. 

Since f preserves <', the light cone, Q(x) = 0, 
through the origin is kept fixed. Therefore, multiply­
ing f by a scalar if necessary, we deduce that f 
leaves Q invariant. In other words, in modulo 
multiplication by a translation and a dilatation, 
f is a time-orientation-preserving element of the 
Lorentz group. Therefore f E G, and the proof 
of the theorem is complete. 
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