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Abstract

In this expository note, we discuss the celebrated theorem known as “van der Waerden’s theo-
rem on arithemetic progressions,” the history of work on upper and lower bounds for the function

associated with this theorem, a number of generalizations, and some open problems.

1 van der Waerden’s theorem, and the function w(k)

The famous theorem of van der Waerden on arithmetic progressions is usually stated in the following
way.

Theorem 1. (van der Waerden 1927 [24]). For every positive integer k, there exists a positive integer
n such that if the set [1,n = {1,2,...,n}] is partitioned into two subsets, then at least one of the subsets

must contain an arithmetic progression of size k.

(Recall that an arithmetic progression of size k is a set of the form {a,a+d,a+2d,...,a + (k — 1)d},
where d > 0.)

This latter statement (with r subsets instead of two subsets) is the statement given in van der Waer-
den’s original proof, which used a double induction on k and r. Van der Waerden’s original proof was
found with the help of Artin and Schrier. See [25] for a nice description of how the proof was found, and
of the proof itself.

Good expositions of this proof are given in the charming book by Khinchin [14], and in the book
,22].

Perhaps the easiest of these to read is [15]. A very short proof is in [13]. A topological proof is in [9].

by Graham, Rothschild, and Spencer [13]. Other proofs of this statement can be found in [ 1,7,

An algebraic proof is in [2].

For each positive integer k, we let w(k) denote the smallest positive integer such that if the set [1, w(k)]
is partitioned into two subsets, then at least one of the subsets must contain an arithmetic progression of
size k. The function w(k) is often called the van der Waerden function.
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One can use a simple backtrack procedure to find the exact value w(k) for small values of k. The idea
is, first of all, to replace a partition of [1,#] by a binary sequence of length n. The sequence 00110011,
for example, corresponds to the partition {1,2,5,6},{3,4,7,8}, as illustrated in this diagram:

1 23 45 6 7 8
00110011

An arithmetic progression of size k which is contained in one of the sets of the partition then corre-
sponds to k equally space 0’s or k equally spaced 1’s. One then “grows” a maximal (i.e., non-extendable)
binary sequence which does not contain k equally spaced O’s or 1’s, by starting with a 0, then at each
stage adding a O at the end of the sequence if possible (that is, if the addition of this 0 does not produce
k equally spaced 0’s). If adding a O is not possible, then one adds a 1, if possible. If neither O nor 1 are
possible, the given sequence is maximal. In this case, one goes back and changes the latest O to a 1 (if
this produces 3 equally spaced 1’s, then one goes back to the next preceding 0 and changes that to a 1),
and then continues to form another maximal sequence. This is repeated, until the procedure requires the
initial O to be changed to a 1; by symmetry, one can stop at this point. The length of the longest binary
sequence obtained in this way will be w(k) — 1.

For example, with k = 3 the first few maximal binary strings obtained in this way are listed below.
Each line ends when neither a O nor a 1 can be added to the string. Then the latest O is changed to a
1, and the process continues on the next line. In the first line, a O cannot be added because of the 0’s
in positions 2 and 5. (Adding a 0 would produce 3 equally spaced 0’s in positions 2,5,8.) A 1 cannot
be added in the first line because of the 1’s in positions 6 and 7. (Adding a 1 would produce 3 equally

spaced 1’s in the positions 6,7,8.) Then, the 0 in position 5 is changed to a 1, to begin the second line.

1 23 45 6 7 8
0 01 0 01
0 01 0 11
0 011 0 011

This process will terminate in less than a page, to show that w(3) = 9. a computer will find in a few
seconds that w(4) = 35. Unfortunately, this simple backtrack procedure takes far too long even for the
case k = 5. A refinement [19] was used to show w(5) = 178; the CPU time used was about 6 months.
These values, together with w(2) = 3, are the only known values of w(k). G. Mills has pointed out that
for these known values, w(k) is very close to (3/2)k!.

2 Upper bounds on the van der Waerden function

Every known proof of van der Waerden’s theorem gives, at least implicitly, an upper bound for the
function w(k). For example, if we let w(k,r) denote the smallest value of n such that in every partition
of the interval [1,n] into r subsets, at least one subset must contain an arithmetic progression of size k,
then the proof found in Kkinchin’s book gives w(3) = w(3,2) < 5-(2-254+1),w(3,3 < 7-(2-37 +1)(2-
37340 1 1), ..., and then w(4) = w(4,2) < 14- (3w(3,2M +--).



We can see from the pattern of these bounds that the bound on w(3,2'4), and hence the bound on
w(4), will involve a tower of exponents of height 2'#, very much larger indeed than w(4) = 35.
These bounds (and the bounds given by all other proofs prior to 1987) are in fact so large that it was

not known until 1987 whether or not w(k) was a primitive recursive function. R. L. Graham for many
2

years had a standing offer of US $1000 for a proof or disproof of the bound w(k) < 2?2 , where there
are k 2’s in this tower of exponents.

In 1987 S. Shelah [18] gave a completely new combinatorial proof of van der Waerden’s theorem
which gave an upper bound for w(k) which was tiny in comparison with earlier proofs. To describe the

2
Shelah upper bound, first define the sequence of numbers ny,ny,... by ny =2, ny = 22 =4, 3= 22" =
2 2

216 — 65536, ny = 2%, where this is a tower of 65536 2’s, ns = 22 where this is a tower of 14 2’s,
2

and so on. Shelah showed that w(k) < ng4,. Although this was far weaker than w(k) < 22" | Graham
awarded him US $500, and the original prize was still available.

Y

In 1999, at a meeting in Budapest, on “The Mathematics of Paul Er8s,” Graham handed over a check

249

for the full amount of US $1000 to W. Timothy Gowers, who had proved that w(k) < 2222 . At the
same time, Graham announced that he would now give US $1000 for a proof or disproof of the bound
w(k) < 2

Brown [4] showed that if one chooses a random partition of the interval [1, (logk)?2¥] into two
subsets, then the probability that at least one of these subsets contains an arithmetic progression of size
k goes to 1 as k — oo, It is likely that this remains true for the interval [1,2].

3 Lower bounds on the function w(k)

A straightforward application of the “probabilistic method,” using also the Lovasz Local Lemma, gives
a lower bound of (1 +0(1))(2*/2ek) < w(k), where e = 2.718.... Here o(1) is a function on k which
converges to 0 as k — oo. For details see [13]. Zoltdn Szabd [20] improved this to: for every € > 0,
2k /k& < w(k) for all sufficiently large k.

By a constructive argument, Berlekamp [3] showed that for primes p, p-2” < w(p+1).

It follows from Berlekamp’s result that limsupw (k) /2¥ = oo as k — oo. Paul Erdds offered US $25
for a proof that limw(k) /2F = oo as k — co. This remains an attractive open question, and the US $25
prize still stands.

4 Szemerédi’s Theorem

Szemerédi’s theorem is the following statement:

Theorem 2. (Szemerédi 1974 [21]). For every k > 1 and every € > 0 there exists n such that

AC|[L,n] A contains an arithmetic
progression of size k

Al/n> e



This clearly implies van der Waerden’s theorem, for if k is given and we partition [1,n] into two
subsets, then at least one of them, call it A, will have the property that |A|/n > 1/2. Taking € = 1/2 in
the above statement, if # is large enough then A must contain an arithmetic progression of size k.

This statement was conjectured by Paul Erdds and Paul Turdn in 1936. It was first proved for the case
k =3 by Klaus Roth in 1952 [17], using trigonometric sums. Then in 1974, Erd6s offered US $1000 for
a proof of the general case. A proof for the general case was found by Szemerédi in 1974 [21]. (This
proof was called “a masterpiece of combinatorial reasoning” by Graham, Rothschild, and Spencer [13].)

The US $1000 awarded to Szemerédi is the largest prize every collected for an Erd&s problem.

In 1977 Furstenberg [10] found an entirely different proof, using ergodic theory.

In 1998 W. Timothy Gowers found another proof which (as mentioned above), resulted in a sensa-
tional improvement of Shelah’s upper bound for the van der Waerden function w(k). Gowers’ proof used
Fourier analysis and probability theory, as well as combinatorics. His proof for the case k =4 is in [12].
The proof for the general case has not yet appeared.

Now for each positive integer k and each positive real number €, we let Sz(k, &) denote the smallest
positive integer such that

ACJl,n]
|A|/n>€

A contains an arithmetic

progression of size k

The function Sz(k, €) is called the Szemerédi function.

Theorem 3. (Gowers 1998). For every positive integer k and every positive real number €, Sz(k,€) <
2(1/8)22k+9
2

Since for every partition of [1, 7] into two subsets, at least one of the subsets, call it A, has |A|/n > 1/2,
2+

it follows from Theorem 3 that w(k) < Sz(k,1/2) < 2%

5 Other results and open questions

Erd6s and Graham [8] observed that Szemerédi’s theorem implies the following result: If the set of all
positive integers is partitioned into arbitrarily many subsets (perhaps infinitely many), then for every k
there is an arithmetic progression P of size k with the property that either P is completely contained
in one of the subsets, or else P intersects each subset in at most one element. This result (called the
canonical form of van der Waerden’s theorem) is often stated in the following way: If f is an arbitrary
function from the positive integers to the positive integers, then there are arbitrarily large arithmetic
progressions P such that the restriction of f to P is either constant or one-to-one.

Deuber, Graham, Promel and Voigt [6] proved the “multi-dimensional version” of the canonical
version of van der Waerden’s theorem. Their proof makes use of Furstenberg and Katznelson’s multi-
dimensional generalization of Szemerédi’s theorem [ 1], for which no elementary proof is yet known.
(Furstenberg and Katznelson’s proof uses heavy ergodic tools.) Later, a combinatorial proof (of the
multi-dimensional version of the canonical form of van der Waerden’s theorem) was given by Promel

and Rodl [16] which did not use Szemerédi’s theorem.



One of Erd3s’s most famous conjectures, for which he offered US $3000, and later US $5000, is the
following. Let A be a set of positive integers such that } -4 % = oo, Then for every k, A must contain
an arithmetic progression of size k. This statement, if true, is stronger than Szemerédi’s theorem. It still
remains open, even for k = 3.

Erdés offered US $10,000 for an explicit asymptotic formula for the function g(n), where g(n) =
max{|A| : A C [1,n] and A contains no arithmetic progression of size k}. Again, Szemerédi’s theorem
implies that g(n,k)/n — 0 as n — oo.

One can also allow k to depend on n, and Erd6s offered US $100 to settle the question of whether
or not g(n,logn)/n — 1 as n — . This was settled in the affirmative by Brown and Freedman [5],
who proved that for all k > 4, g(n,k) > n— (12nlogn)/(klogk). With k = logn, this gives g(n,logn) >
n—(12n)/(loglogn).

They also noted that the statement g(n,loglogn)/n — 1 as n — o implies Szemerédi’s theorem, and
showed that Sz(p,1/e) > p? for every prime number p > 7.

It would be interesting to know the exact value of g(n?,n) It is known (see [, 23] that n> — n(1 +
o(1)) < g(n?,n) <n®—2n(1+o0(1))).

See also
e http://www.mathsoft.com/asolve (an excellent site with many interesting links)
e http://math.ucsd.edu/"fan (Fan Chung Graham’s web page)

e http://www.integers-ejcnt.org (Integers: the Electronic Journal of Combinatorial Number
Theory)

e http://www.combinatorics.org (The Electronic Journal of Combinatorics)
e http://can.dpmms.cam.ac.uk/ wtgl0 (W. T. Gowers’ home page)

e http://www-groups.dcs.st-andrews.ac.uk/ history/Mathematicians/Erdos.html (bi-
ography of Paul Erdés and links to other Erdds sites)
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