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Abstract

After some general remarks about Ramsey theory, we describe a particular partition of the non-

negative integers into infinitely many translates of an infinite set. This partition is used to settle (nega-

tively) the question of the truth of a statement similar in form to the Erdős-Graham canonical version

of van der Waerden’s theorem on arithmetic progressions. It is also used to give a lower bound for one

of the classical van der Waerden functions.

1 Introduction

Ramsey theory is a cohesive sub-discipline of combinatorics. The theme of Ramsey theory is that “com-
plete chaos is impossible”. Or, one could say that Ramsey theory is “the study of unavoidable regularities
in large structures”.

Two of the largest branches of Ramsey theory start with either “Ramsey’s Theorem” on the one
hand, or “van der Waerden’s Theorem on Arithmetic Progressions” on the other. These two branches
sometimes overlap, but a great number of results can be placed on one branch or the other.

The simplest form of Ramsey’s Theorem says that for every positive integer k there exists a (smallest)
positive integer r(k) such that any graph on r(k) vertices contains either a complete subgraph on k vertices
(all edges are present) or an independent set of k vertices (no edge is present). A stronger statement, also
proved by Ramsey, is that in any graph on infinitely many vertices, there is either an infinite set of vertices
A, in which all edges are present, or there is an infinite set of vertices B, in which no edge is present.

The simplest form of van der Waerden’s Theorem on Arithmetic Progressions says that for every
positive integer k there exists a (smallest) positive integer w(k) such that if f1;2; : : : ;w(k)g is partitioned
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into two parts, in any way whatsoever, then at least one of the parts contains a k-term arithmetic pro-
gression, that is, a subset of the form fa;a+ d;a+ 2d; : : : ;a+(k� 1)dg. (An equivalent statement is
the following: If the set of all positive integers is partitioned into two parts, then one part must contain
arbitrarily large (finite) arithmetic progressions.)

For example, w(5) = 178, and this means:

1. If f1;2;3; : : : ;178g is the disjoint union of A and B, then A or B must contain a 5-term arithmetic
progression fa;a+d;a+2d;a+3d;a+4dg.

2. There exists a partition of f1;2;3; : : : ;177g into sets A and B such that neither A nor B contains a
5-term arithmetic progression.

The fact that w(5) = 178 was shown by direct computation. To establish w(5) � 178, one has to
essentially check all of the 2178 partitions into two parts of f1;2;3; : : : ;178g, so its not surprising that
the value of w(6) is unknown. (It is known that w(6)� 696.) Other known values of w(k) are w(3) = 9,
w(4) = 35, w(3;3;3) = 27 (partitions of f1;2; : : : ;27g into 3 parts), and w(3;3;3;3) = 76 (partitions of
f1;2; : : : ;76g into 4 parts). There are also a few known values such as w(4;3;3) = 51, which means that
every partition of f1;2; : : : ;51g into 3 parts produces a 4-term arithmetic progression in the first part, or
a 3-term arithmetic progression in the 2nd or 3rd parts, and 51 is the smallest positive integer with this
property.

In 1999, Ron Graham gave Timothy Gowers a “reward” of $1000 US dollars for showing that w(k)<

22222k+9

. This bound, while quite large, is tiny compared to the previous best-known bounds.
The true rate of growth of the function w(k) is one of the holy grails of Ramsey theory, and Ron

Graham now offers $1000 US dollars for a proof (or disproof) that w(k) � 2k2
. The best lower bound

known for w(k) is the following: for every ε > 0, 2k=kε < w(k), for all sufficiently large k.

2 The Description of a Particular Partition

Let S denote the set of all distinct sums of odd powers of 2, including 0 as the empty sum, and let T

denote the set of all distinct sums of even powers of 2, including 0 as the empty sum. Then every non-
negative integer can be written uniquely in the form s+ t, where s 2 S and t 2 T . Thus fs+T : s 2 Sg is
a partition of ω = f0;1;2; : : :g into translates of T .

It is more convenient to describe this partition as a coloring f of ω . Thus for each n 2 ω , we write
n= s+t, s2 S, t 2 T , and define f (n)= s. In other words, if n=∑i odd 2i+∑i even 2i, then f (n)=∑i odd 2i.
For this coloring f , the set of colors is S, and for each s 2 S, f is constant on the “color class” s+T .

3 A van der Waerden-Like Theorem

We need the following definition.

Definition 1. If A = fa1 < a2 < � � � < ang � ω = f0;1;2; : : :g, n > 1, the gap size of A is gs(A) =
maxfa j+1�a j : 1 � j � n�1g. If jAj= 1, gs(A) = 1.
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Theorem 1. If ω is finitely colored, there exists a fixed d � 1 (d depends only on the coloring) and

arbitrarily large (finite) monochromatic sets A with gs(A) = d.

This fact first appeared in [3]. A proof can be found in [10]. Various applications appear in [4,5,9,11].
Theorem 1 is somewhat similar in form to van der Waerden’s theorem on arithmetic progressions

[13]. However, Theorem 1 differs in a number of ways.
Van der Waerden’s theorem does not imply Theorem 1, since the d in the conclusion of Theorem 1 is

independent of the size of the monochromatic sets A. Beck [1] showed the existence of a 2-coloring of ω

such that if A is any monochromatic arithmetic progression with common difference d, then jAj< 2logd.
Hence the presence of large monochromatic arithmetic progressions, which is guaranteed by van der
Waerden’s theorem, is not enough to imply Theorem 1. Somewhat earlier, Justin [8] found an explicit
coloring such that if A is any monochromatic arithmetic progression with common difference d, then
jAj< h(d); in his example, the coloring is explicit but the function h(d) is not.

Theorem 1 (which has a simple proof) does not imply van der Waerden’s theorem in a simple way.
Theorem 1 does not have a density version corresponding to Szemerédi’s theorem [12]. That is, there

exists a set X � ω with positive upper density for which there do not exist a fixed d � 1 and arbitrarily
large sets A = fa1 < a2 < � � �< ang with gs(A) = d. For an example of such a set, see [2].

Finally, recall that the Erdős-Graham canonical version of van der Waerden’s theorem ( [6]) states
that if g : ω ! ω is an arbitrary coloring of ω (using finitely many or infinitely many colors) then there
exist arbitrarily large arithmetic progressions A such that either g is constant on A, i.e. jg(A)j= 1, or g is
one-to-one on A, i.e. jg(A)j= jAj.

We show that there is no such canonical version of Theorem 1. This is Corollary 1 below.

4 Theorem 1 Does Not Have a Simple Canonical Version

Theorem 2. For every A�ω (with f as described above, in the “description of a particular coloring”),

1
4

p
jAj=gs(A)< j f (A)j< 4

p
jAjgs(A):

Corollary 1. For the coloring f above, there do not exist a fixed d and arbitrarily large sets A with

gs(A) = d on which f is either constant or 1-1.

Proof of Corollary 1. If 16gs(A)� jAj, then by Theorem 2, 1 < j f (A)j< jAj.

To prove Theorem 2, we need the following definition.

Definition 2. For k � 0, an aligned block of size 4k is a set of 4k consecutive integers whose smallest

element is m4k, for some m � 0.

Proof of Theorem 2. Note that the first aligned block of size 4k, namely [0;4k�1] = [0;22k�1], is in 1-1
correspondence with the set of all binary sequences of length 2k. From this we see (by the definition of
f ) that for n 2 [0;22k �1], there are 2k possible values of f (n), and each value occurs exactly 2k times.
It is easy to see (using the definition of f ) that the same is true for any aligned block [m4k;m4k +4k�1].
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We express this more simply by saying that “each aligned block of size 4k has 2k colors, each appearing

exactly 2k times”.
Now we can establish the upper bound in Theorem 2. Let A = fa0 < a1 < a2 < � � �< ang � ω . Then

an � a0 +ngs(A) = a0 +(jAj�1)gs(A), or

an�a0 < jAjgs(A):

Choose s minimal so that A is contained in the union of two adjacent aligned blocks of size 4s. (Two
blocks are needed in case A contains both m4s�1 and m4s for some m.) Then

4s�1 < an�a0:

Since each aligned block of size 4k has 2k colors,

j f (A)j � 2 �2s:

Putting these three inequalities together gives

j f (A)j< 4
p
jAjgs(A):

Next, we establish the lower bound for j f (A)j, which requires a bit more care. We will use the
following Lemma.

Lemma 1. For each k � 0, any two aligned blocks of size 4k (consecutive or not) are either colored

identically, or have no color in common.

Proof of Lemma 1. Consider the aligned blocks [p4k; p4k +4k �1] and [q4k;q4k +4k �1]. By the defi-
nition of f (and since 4k is an even power of 2), f (p4k) = f (p)4k, so that f (p4k) = f (q4k) if and only if
f (p) = f (q). Also, for 0 � j � 4k �1, f (p4k + j) = f (p4k)+ f ( j). This last equality obviously holds
if p = 0, and for p > 0 it holds since then each power of 2 which occurs in j is less that each power of
2 which occurs in p4k. Thus the blocks [p4k; p4k + 4k � 1] and [q4k + 4k � 1] are colored identically if
f (p) = f (q), and have no color in common if f (p) 6= f (q).

Proceeding with the lower bound in Theorem 2, we note that for k � 1, the colors of any aligned
block of size 4k have the form UUVV , where U and V are blocks of size 4k�1.

Next, we note that any block of size 4k, aligned or not, contains at least 2k colors. For let A be any
block of size 4k. Let the first element of A lie in the aligned block S of size 4k, and let T be the aligned
block of size 4k which immediately succeeds S. If S and T are colored identically, then the elements of
f (A) are just a cyclic permutation of the elements of f (S), and hence the block A contains exactly 2k

colors. By Lemma 1, the remaining case is when S, T have no color in common. In this case, by the
preceding paragraph, f (S) f (T ) = UUVV XXYY , where no two of U;V;X ;Y have a color in common,
and U;V;X ;Y are of size 4k�1. Then f (A), which has size 4k, contains either UV or V X or XY , and so
has at least 2k�1 +2k�1 = 2k colors.

Finally, we note that for s � 1, k � 1, every set of 4s consecutive aligned blocks of size 4k contains
at least 2s blocks of size 4k, no two of which have a common color. This follows from the fact that these
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4s blocks have the form [p4k; p4k + 4k � 1], t � p � t + 4s � 1, for some t. The block f ([t; t + 4s � 1])
has at least 2s colors, by the preceding paragraph. If f (p) 6= f (q), where t � p < q � t + 4s � 1, then
f (p4k) 6= f (q4k), so by Lemma 1 the two blocks [p4k; p4k +4k�1] and [q4k;q4k +4k�1] have no color
in common.

Now let A�ω be given. Choose k so that 4k�1 � gs(A)< 4k. Choose t minimal so that A is contained
in the union of t consecutive aligned blocks of size 4k. Then A meets each of these blocks (by the choice
of k), and

jAj � t4k:

Choose s so that 4s � t < 4s+1. Then among the t consecutive aligned blocks of size 4k are at least 2s

blocks of size 4k, no two of which have a color in common. Since each of the t blocks meets A, we have

2s � j f (A)j

Thus jAj � t4k < 4 �4s �4 �4k�1 � 4j f (A)j2 �4 �gs(A), so 1
4

p
jAj=gs(A)< j f (A)j.

5 An Easy Lower Bound for a Classical van der Waerden Function

Definition 3. For m � 1, let w(3;m) denote the smallest positive integer such that every m-coloring of

[1;w(3;m)] produces a monochromatic 3-term arithmetic progression.

Theorem 3. For all m � 1, w(3;m)� 1
4 m2.

Proof of Theorem 3. The coloring f shows (since the set T contains no 3-term arithmetic progression)
that for k� 1, w(3;2k)> 22k. For a general m, choose k so that 2k �m< 2k+1. Then w(3;m)�w(3;2k)>

22k > 1
4 m2.

6 Remarks

1. The lower bound in Theorem 3 is not the best possible. Indeed, in the standard reference Ramsey
Theory [7], the authors show with more elaborate techniques that for some positive constant c,
w(3;m)> mc logm.

2. Corollary 1 shows that a constant/1-1 canonical version of Theorem 1 is not true. We also know
by the Bergelson/Hindman/McCutcheon example that a density version of Theorem 1 is not true.
The following three simple examples, most involving only 3-element sets, illustrate various com-
binations of the truth or falsity of the “constant/1-1 version” and the “density version”.

(a) The simplest non-trivial case of van der Waerden’s theorem says that every finite color-
ing of the positive integers produces a monochromatic 3-term arithmetic progression. The
constant/1-1 version of the result holds by the Erdős-Graham theorem, and the density ver-
sion holds by Szemerédi’s theorem.
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(b) Schur’s theorem says that if the positive integers are finitely colored, then there is a monochro-
matic solution of x+ y = z. The density version does not hold by taking all the odd integers.
The constant/1-1 version does not hold by coloring each x with the highest power of 2 divid-
ing x.

(c) Kevin O’Bryant showed me this example: If the positive integers are finitely colored, then
there is a monochromatic 3-term geometric progression (a set of the form fa;ad;ad2g). To
get the constant/1-1 version, let a coloring g of the positive integers be given. Define a
new coloring h by setting h(x) = g(2x). Then, by the Erdős-Graham theorem, there is a set
fa;a+d;a+2dg on which the coloring h is either constant or 1-1, so the coloring g is either
constant or 1-1 on the set f2a;2a2d ;2a(2d)2g. The density version does not hold, since the
set of square-free numbers has positive density.

(d) It seems natural to ask for a collection P of 3-element sets (if such a collection exists!) for
which:

i. Every set of positive integers with positive upper density contains an element of P.

ii. It’s not the case that for every coloring of the positive integers, there is an element of
P on which the coloring is either constant or 1-1. Allen R. Freedman communicated
the following example to me, involving infinite sets. Here instead of considering those
collections of triples fx;y;zg for which x+z = 2y, or x+y = z, or xz = y2, one considers
the collection P of all subsets of ω which have positive density. Then trivially every set
of positive density contains an element of P. However, any coloring which is constant on
each interval [2n�1;2n], with different colors for different n, shows that the constant/1-1
version does not hold.

3. We have used a particular partition of ω into infinitely many translates of an infinite set. Perhaps
it’s possible to describe all partitions of ω into infinitely many translates of an infinite set.
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