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Abstract

For each positive integer n, let the set of all 2-colorings of the interval [1,n] = {1,2,...,n} be given
the uniform probability distribution, that is, each of the 2" colorings is assigned probability 27". Let f
be any function such that £(k)/logk — oo as k — co. For convenience we assume that f(k)2 is always
a positive integer. We show that the probability that a random 2-coloring of [1, f(k)2] produces a
monochromatic k-term arithmetic progression tends to 1 as k — co. We call f(k) 2 a pseudo upper

bound for the van der Waerden function. We also prove the “density version” of this result.

1 Introduction

Let w denote the van der Waerden function. By definition, for each integer k > 1, w(k) is the small-
est positive integer such that every 2-coloring of the interval [1,w(k)] = {1,2,...,w(k)} produces a
monochromatic k-term arithmetic progression. (Equivalently, for every partition of [1,w(k)] into at most
two parts, at least one part contains a k-term arithmetic progression.)

The existence of w(k), k > 1, was proved by van der Waerden in 1927 [7]. The best known lower
bound for w(k) is w(k) > (2¥/2ek)(1+0(1)) (see [4]). For p prime, Berlekamp [2] showed that w(p +
1) > p2”. (For some related lower bounds, see [, 3,5].) The best known upper bound (a “wowzer”
function, as des;:ribed in [4]) is due to Shelah [6]. R. L. Graham has offered $1000 (see [4]) for a proof

that w(k) < 22, a tower of height k.

Let f be any function such that f(k)/logk — oo as k — co. For convenience we assume that f(k)2*
is always a positive integer.

In this note we show that “almost all* of the 2-colorings of [1, f(k)2*] produce a monochromatic
k-term arithmetic progression.

This means that if Sy is the set of “exceptional” colorings, that is, if ny = f (k)2k and Sy, is the set
of all 2-colorings of [1,n;] for which there is no monochromatic k-term arithmetic progression, then
|Sk|-27" — 0 as k — co.

We then say that f(k)2F is a pseudo upper bound for the van der Waerden function.
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To illustrate the method, consider 2-colorings of the interval [1,k], where t = k2%, and let Ty denote
the set of all those 2-colorings of [1,#k] for which none of the 7 intervals [1,], [k+ 1,2k], ..., [(t— 1)k +
1,¢k] is monochromatic. Then

|T| -2~ = (2% —2) .27 = (1— > <e 5 0ask— oo

1
k=1

Therefore “almost all” of the 2-colorings of [1,k*2X] produce a monochromatic k-term arithmetic

progression; moreover, this monochromatic progression is one the intervals [1,k], [k + 1,2k],..., [(t —
Dk+1,tk].

The proof of Theorem 1 below consists of a refinement of the above simple argument, in order to
reduce k22% to f(k)2.

In the argument above, we used certain (pairwise disjoint) arithmetic progressions with common
difference 1. In the proofs of Theorems | and 2, we use certain progressions with common differences
1,k,k%,...,k*, any two of which have at most one point in common.

Theorem 2 is the “density version” of Theorem 1. (Note that Theorem 1 follows from the case
€ =1/2 of Theorem 2.)

2 Results

Theorem 1. Let f be any function such that f(k)/logk — o as k — oo. For convenience we assume that
f(k)2% is always a positive integer. For each positive integer n, let the set of all 2-colorings of [1,n] =
{1,2,...,n} be given the uniform probability distribution, that is, each of the 2" colorings is assigned
probability 27". Then the probability that a random 2-coloring of [1, f (k)2X] produces a monochromatic

k-term arithmetic progression, tends to 1 as k — oo.

Proof. For each positive integer k > 2, let n; = f(k)2¥. Let S; denote the set of all those 2-colorings
of [1,n,] which do not produce any monochromatic k-term arithmetic progression. We will show that
limg 00 |[Sg| - 27% = 0.
Let n = ny = f(k)2*. Define the integer s = s; by k> <n < k*+2. Letn=k’q+r,0<r <k’ < /n.
Let us assume without loss of generality that f(k) < k%. (The previous discussion has already handled
the case f(k) > k%.)

Some easy calculations show that, as k — oo,

S S

k k
s —)0and£—q—>oo.

k2% k 2k
These facts are used later in the proof.
The interval [1,n] consists of g consecutive intervals, By, B, ... ,Bg, each of length &°, followed by a
single interval of length r, r < k°.
We wish to examine 2-colorings of the interval By. Let us identify B; (by shifting it one unit to the
left) with the interval [0,4° — 1], and further identify the interval [0,k° — 1] with the set of s-tuples

C={xox; - x5-1:0<x; <k—1},



under the correspondence xgxy - --x5_1 <> Z‘l?;ll x;k'. That is, we identify each integer in [0,k* — 1] with
the s-tuple of the digits in its k-ary expansion.
Under this identification, B; may be visualized as the s-dimensional cube C, k units on a side. For

our purposes, we say that a line in the cube C is a set of the form
{xoxjayxjer X1 1 0<y <k—1},

where the x;’s are fixed. If the jth coordinate is the “moving” coordinate, then the k points in this line
correspond to k integers in By which form an arithmetic progression with common difference /.

There are sk*! lines in the cube C. For each line u in C, let A; denote the set of 2-colorings of C for
which the line u is monochromatic. Then |A,| = 2-2F~*. Given any two distinct lines « and v, u and v

are either disjoint or meet in 1 point. In either case, |A,NA,| =4- 2K =2k Therefore
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for sufficiently large k, since (s/k)(k*/2%) — 0.
Let z denote the number of colorings of the cube C for which none of the sk*~! lines in C are

el_sk
<2 O kﬂ>'

The set Sy defined at the beginning of the proof has |Si| < z727, so that

monochromatic. Then (for sufficiently large k)

s
z=2F —

U
u

-2 < (13 ) <o

Since (s/k)(k*q/2%) — o0 as k — oo, the proof is complete. O
Theorem 2. Let € be fixed, 0 < € < 1. Let f be any function such that f(k)/logk — oo as k — oo, Let
n = f(k)e=* (we assume that this is always an integer), and let A be a “random en-element subset of

[1,n],” which means that each element of [1,n] belongs to A with probability €. Then the probability that

A contains a k-term arithmetic progression, tends to 1 as k — oo.

Proof. The numbers s and r are defined as in the proof of Theorem 1 (with n now defined by n =
f(k)e™*), and again we write n = k*q+r, 0 < r < k* < \/n. Next, as k — oo,

%k‘vek — 0 and %k"skq — oo,



(To see this it is convenient to show first that for any i > 0, the inequalities

1 1 s 1 1
—log(1 - — < - log(1
(ro/)-n) ooz < 7 < (Sroet1/er ) o

hold for all sufficiently large k. For the right-hand inequality, one again needs to assume that f(k) < k2,
and handle the case f(k) > k? by a separate argument, as in the discussion in the Introduction.)

The cube C is defined as before. Let B denote a random €|C|-element subset of C, where each element
of C belongs to B with probability €. Let p, = Pr{u C B] = &, where u is any one of the sk*~! lines in
C, and let p,, = Pr[u C B and v C B, where u and v are distinct lines in C. Then Pr[u C B for some u] >

Zu Pu— Zu,vpuv'
Through each of the k* points of C there are s lines, and hence of the (Yk ) pairs of lines {u,v},

exactly k° ( ) pairs meet, and the other pairs are disjoint. Then

Sos ok s £2k-1 sk* ! sS 2k
- =-kKe" -k —k
ErEr=gee v ()= [(, ) - ()]
_Sosok s S 2k71_l£sk Sosok ok s(S) ok
—kke k<2>£ 2kk£(kk8 s)+k<2>£.

The remaining inequalities hold for sufficiently large k.
Since (s/k)k*ek — ek < 1/2, we get

S _
Zpu pr ﬁk"‘ k-‘<2>82" (1-¢).

Since 3 (s/k)k’ek —k*(5) €%~ (1 —€) > 0, we get

Zpu Zpuv > **ks k

u,v

Finally, with n = k*q + r, if each element of [1,7] belongs to A with probability €, then

q k
Prno u C A] < <1 - ;zks8k> < e /D6/MES g

3 Remarks

Note that in the proofs, the only k-term progressions considered are (some of) those whose common
differences have the form k/, where 0 < j < s < 1+ (klog2)/(2logk).

It would be desirable to get rid of the factor f(k), if possible. To accomplish this, evidently one needs
to use a larger collection of k-term progressions. (Using all of the (s + 1)* — s* combinatorial lines in the

cube C, instead of just the sk*~! lines with one moving coordinate, does not lead us to an improvement

in f(k).)



Perhaps, by using a sufficiently large set of progressions, one could show that (1 + o) is a pseudo

upper bound for the van der Waerden function, for every o > 0.
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