
Malleability FAQ
Andrew Poelstra

16 February 2014

1 What’s the deal with malleability?

1.1 What is transaction malleability?

Malleability is a property of a cryptosystem which describes how much an encrypted or signed
message can be modified after-the-fact without invalidating the encryption or digital signature. For
Bitcoin, malleability means the ability to subtly modify transactions after they have been signed.

It should be emphasized that these modifications do not change the meaning of transactions one

iota to the Bitcoin network. Therefore, malleating a transaction cannot reroute funds or invalidate
it.

Specifically, the malleability that Bitcoin transactions suffer from is caused by the fact that
signed transactions include their signatures, along with a bit of metadata about the signature (its
size, for example). Since Bitcoin’s ECDSA signatures are unforgeable, no signed data can be
changed by anyone after the fact — but since digital signatures are tied to the message they sign,
it’s impossible for the signature itself to be signed data!

So the parts of the transaction which have meaning to the Bitcoin network cannot be changed
after signing, but the signature itself can be, in a couple of ways. This is how we know that while
transactions are changed, it is impossible to change them in any serious way.

1.2 So why does this matter?

Associated to each Bitcoin transaction is the poorly-named txid, which identifies a transaction in the
sense that no two transactions can share the same txid. txids are not stored alongside the transaction;
instead they are computed by hashing up the transaction (signature and all). Therefore, if a signature
is changed, even by a single bit, the txid can completely change.

This is a problem because txids are used within Bitcoin to chain transactions together. This is
how Bitcoin keeps track of funds — when you spend money, you mention the transactions (by txid)
in which you received that money. So because txids can change, this means that you can’t spend
money until your own receiving transaction has been confirmed. Then the entire network agrees on
its txid and all is well.

This is not a problem for ordinary transactions, because the point of confirmations is to prevent
double-spends. So if you are spending unconfirmed coins, this is already unsafe behaviour and
transaction malleability does not change that fact.

It is a problem for some creative protocols designed to enable deposits, micropayments, certain
escrow structures, etc., which depend on chaining unconfirmed transactions together and assuming
nobody can break the chain. But malleability does break the chain, and these protocols have not
been implemented because of this.

1



2 Why is this in the news?

2.1 How come all these exchanges have halted withdrawals then?

The answer to the last question suggested that this “malleability” business was an awfully esoteric
problem. But there are several Bitcoin businesses who recently temporarily halted withdrawals,
blaming malleability. So what gives?

Update: To the best of my knowledge, every service except Mt. Gox is back online and func-
tioning.

With one notable exception (see the next question), the reason that Bitcoin services have shut
down is that recently a Bitcoin node came online which is actually malleating transactions that come
by. When this node changes the txid of a transaction, the result is two transactions (the original and
the new one) which claim to send money from exactly the same receiving transactions. To the
Bitcoin network, this is the definition of a double-spend.

In principle this doesn’t matter — Bitcoin prevents double-spending by ensuring that only one
of the two transactions will confirm, and since they’re identical anyway, it doesn’t matter which one.
However, because of this fact, double-spends are quite rare and services accepting Bitcoin therefore
become uneasy whenever they detect one. Because of this rogue node, one morning these services
woke up to see tens of thousands of double-spends. As you can imagine, their systems did not like
this, and they were effectively DOS (denial of service) attacked by it.

So the main reason these services shut down is to strengthen their code to handle floods of
double-spends without any trouble. It is likely that they are also auditing their code to ensure that
they don’t depend on txids to be constant. This would be a bug, but since txids didn’t change much
in practice until recently, it’s a safe bet that such a bug would not have been detected before now.

2.2 What about Mt. Gox?

Their troubles are entirely their own fault, and it seems like their press release was the impetus for
this malleating node to start running, so everyone else’s troubles are also their fault.

Their conduct and accusations were and are completely antisocial, unprofessional and simply
reckless. I strongly encourage anybody storing funds with this sham of a business to get these funds
out as quickly as possible.

As we will see in the next question, any money lost by Mt. Gox was lost sheerly by their own
incompetence. And this is not the first time they have done so — for example, in late 2011 they
sent several hundred Bitcoins to a null address1. Another example is that their software would try to
spend immature coins (coins which were mined less than 100 blocks ago, which the network does
not allow to be spent), a fact that was noticed in early September 2013 by a Bitcoin developer (not

anyone working for Mt. Gox) when some customers were unable to withdraw their money.

1see transaction aa62bdd690de061a6fbbd88420f7a7aa574ba86da4fe82edc27e2263f8743988

2



2.3 Yeah but what happened to Mt. Gox?

Okay, one way to malleate a transaction is to change the format of its digital signature. The
OpenSSL library that Bitcoin uses is not too picky about the formats that it accepts, so it is possible
to tweak a transaction to have an excessively padded signature, but still have it be accepted by the
network.

For a long time, at least since early 2013, Mt. Gox was exploiting this freedom of format to
create transactions with excessive padding. It is not clear why they were doing this, but the nicest
explanation is that this was an honest bug in their signing code. In early 2013, there was talk
of cracking down on these nonstandard signatures, and it was noticed in the Bitcoin development
channels that Mt. Gox was originating many of them. Of course, Mt. Gox itself claims to have been
unaware of this.

As we would later learn, Mt. Gox had “no time” to notice this single fact over the course of
a year, or to notice the article on the Bitcoin wiki describing this form of malleability since 2011.
This is understandable, since processing Bitcoin transactions is only the entirety of their business
model.

As a first step to eliminating malleability (remember, there are useful protocols which could be
enabled by its elimination), in version 0.8.0 of the Bitcoin reference client poorly-padded signatures
became nonstandard. This means that while transactions with invalid padding may be mined, new
clients will not relay them, that is, they will play no part in actually communicating them to miners.
This version was published in February 2013.

With this change, Mt. Gox’s nonstandard transactions suddenly took a long time to get through
the network, and confirmations were very slow. At this point, Mt. Gox really had no excuse not to
realize their mistake, since it was causing very user-visible problems and the explanation was being
mentioned on IRC at least once every single day.

A few enterprising users realized that malleability was their saviour: by connecting directly to
Mt. Gox, they could find their withdrawals, fix the signature themselves, and then relay it. By doing
this, these users were able to process their withdrawals quickly despite Gox’s incompetence. A bit
later, they noticed something else: when they changed the transaction, they’d change the txid, and
this meant that Mt. Gox’s website would not notice the transaction going through.

To be clear: Mt. Gox was sending money on the Bitcoin network and was not keeping track of

this fact. This is money-losing mistake number one on their part.
Next, because Mt. Gox would not notice the withdrawals, the customer could request that the

withdrawal be reprocessed, and Gox would automatically do so. Now, in Bitcoin there is a notion
of “resending” money. That is, if a transaction is not confirmed, you can create a new transaction
with the same inputs (but with perhaps a higher fee, or a properly formed signature, say). This is
a double-spend, so you can be assured that at most one of the transactions will go through. In this
way you can resend money without fear of somehow spending twice as much as you meant to.

If you don’t respend money in this way, you will get robbed. This should be common sense to
anybody doing payment processing, and cannot be emphasized enough. An analogy to traditional
banking would be if Gox was reissuing cheques without cancelling the old ones.

Rather than resending money, Mt. Gox chose to send different money. That is, their response

3



to losing track of their money was to automatically spend even more, to anyone who requested, and
still not track these spends. This is money-losing mistake number two.

On February 10, 2014, Mt. Gox finally noticed this problem. (Perhaps an angel appeared to
Mark Karpeles/MagicalTux in a dream, or more likely they listened to one of their customers, who
explained this problem to them. Again, Mt. Gox was unable to notice this on their own). Rather
than asking the Bitcoin developers for advice, or fixing their own software, or asking any informed
person to proofread, they published without warning a press release which claimed there was a
“flaw in the Bitcoin protocol” called “transaction malleability” and that the Bitcoin developers were
at fault for their losing money. Furthermore, they halted withdrawals and demanded without pay a
“fix” from the Bitcoin developers before they would re-open.

Now, ignoring for a second the lies and extortion here, this request makes no sense at all. Firstly,
Mt. Gox’s code has nothing to do with code written by the Bitcoin developers. Secondly, the two
ways that Gox lost money (not tracking transactions and “resending” by sending even more money)
have nothing to do with transaction malleability.

The next day, the malleating node went online, no doubt spurred by this press release, and
caused the other exchanges to be DOSed.

2.4 What about the Silk Road 2?

SR2’s statement appears to be a very clumsy and transparent lie. They provided no details and still
managed to contradict reality (claiming there is a “bitcoin exploit” that allows theft of funds), so
that’s the best response I can give.

3 So what is being done about this?

3.1 Is there something wrong with the Bitcoin client?

There are two problems with the reference Bitcoin client which have come to light amidst this
malleability story, and neither of them allow funds to be lost or stolen.

The first is that the Bitcoin client does not handle double-spends with any grace, and this in-
cludes “double-spends” which are actually malleated transactions. This has been a known problem,
but not a high-priority one, since it’s impossible to create double-spends with the Bitcoin client
anyway. The consequence of this is that the client’s transaction list will show both sides of a
double-spend, even though only one can be confirmed. The other will remain in the client indefi-
nitely, showing zero confirmations and taking up space. This can also cause the available balance
display to be incorrect. To be clear, this is purely a display bug; there is no loss (or even potential
loss) of funds.

The second problem is that the Bitcoin client is willing to spend its own change without confir-
mations, since change is money sent to the client from itself. (The risk with unconfirmed transac-
tions is that the other party will behave in an untrustworthy way. For change, both parties are the
client itself, and it trusts itself.) However, if the txid of the change transaction changes, any new
transactions which spend this change will become invalid. Again, the result is a never-confirming

4



transaction taking up space, though this one is more problematic because it also prevents you from
actually spending the money, as long as it thinks the invalid transaction already has.

The solution to both problems is to (a) detect and handle malleated or double-spent transactions
properly, and (b) give the user the ability to remove unconfirmed transactions from the wallet.

The current flurry of activity on the Bitcoin development channel and on Github is entirely
related to these fixes.

3.2 What about eliminating malleability?

As was mentioned, the problem of malleability has been known since at least 2011. Since it has
prevented the development of new protocols, why hasn’t it been fixed?

Well, one reason is that it’s a fairly low-priority change and would require changes to the con-
sensus code, which is a huge hairy deal to do while preventing divisive “forks” where the network
is unable to agree on which rules are in play for validating transactions.

There is a deeper reason that this hasn’t been fixed though, which is a bit technical. In order to
enable protocols which chain unconfirmed transactions together, we need to eliminate all possible
means of malleating transactions, not just the ones that we’re aware of today. This means that
we need to make sure not only that signatures are encoded consistently, but that the signatures
themselves cannot be changed.

Bitcoin signatures consist of a pair of numbers (the exact algorithm is ECDSA, which you
can look up on Wikipedia) which are required to satisfy an algebraic identity which involves the
signing key of the signer as well as a hash of the message to be signed. It is an open problem
whether or not there are any algebraic manipulations which can change (r,s) but still pass this
validation equation. Such a manipulation would be a very clever form of malleability, but a form of
malleability nonetheless.

Proving mathematically that this can’t be done has shown to be a very difficult problem, and
that is what is necessary to fully eliminate malleability. Until this is done, we cannot grant ourselves
the freedom of nonmalleability, and so progress has been low-priority and slow.

5


