
NIST Threshold Cryptography Workshop, March 12, 2019

Multisignatures and Threshold Signatures
in a Bitcoin Context

Andrew Poelstra
Director of Research, Blockstream

1 / 15



Bitcoin

Bitcoin is a cryptocurrency denominated in unspent
transaction outputs (UTXOs) labelled by a value and (script)
public key.

Transactions destroy UTXOs and create new UTXOs with
equivalent value and different public keys.

Transactions are serialized onto a blockchain which defines a
canonical history.

2 / 15



Bitcoin

Bitcoin users generate a lot of keys; must store and recognize
these.

Loss or theft of a key is not recoverable.

Keys are typically not uniform random; are related in
detectable ways.

Diverse hardware: PCs, tiny devices, cell phones, virtual
machines. Allergic to randomness.

3 / 15



Schnorr Signatures

P = xG

R = kG

e = H(P,R,m)

s = k + ex

Notice P in the hash function.

4 / 15



Schnorr Signatures

Consider “BIP32” keys P and P ′, where P ′ = P + γG for
some non-secret γ.

Used to make key generation and backup more tractable.

R = kG

e = H(R,m)

s = k + ex

→ k + ex + eγ

5 / 15



Sign-to-Contract

Consider the “sign-to-contract” construction which overloads
a signature as a signature on another, auxiliary message.

Used for timestamping, wallet audit logging, and
anti-covert-sidechannel resistance.

P = xG

R0 = kG

R = R0 + H(R0‖c)G

e = H(P,R,m)

s = (k + H(R0‖c)) + ex

6 / 15



Sign-to-Contract Replay Attack

Now suppose k = H(x‖m), as in RFC6979.

s = (k + H(R0‖c)) + ex

− s = (k + H(R0‖c ′)) + e ′x

0 = H(R0‖c)− H(R0‖c ′) + (e − e ′)x

So we’d better have k = H(x‖m‖c)!

7 / 15



Interlude: Randomness

If k deviates from uniform by any amount, given enough
signatures lattice techniques can be used to extract secret
keys. (In practice at least a couple bits of bias are needed.)

A malicious manufacturer could insert such bias in a way that
only the attacker could detect the deviation.

No way to prove that deterministic randomness was used
(general zkps? Hard on typical signing hardware.)

8 / 15



Sign-to-Contract as an Anti-Nonce-Sidechannel Measure

If the hardware device knows c before producing R0 it can
grind k so that (k + H(R0‖c)) has detectable bias.

If it doesn’t know c how can it prevent replay attacks?

Send hardware device H(c) and receive R0 before giving it c.

Then k = H(x‖m‖H(c)).

9 / 15



Multisignatures

Bitcoin people use “multisignature” in a funny way.

Includes thresholds (or arbitrary monotone functions of
individuals’ keys).

Do not expect or want verifiers to see the original keys, for
efficiency and privacy.

10 / 15



Multisignatures

Plain public-key model.

May be chosen (from the set of available keys) adversarially
and adaptively.

Keys controlled by inflexible offline signing hardware.

No good place to store KOSK proofs. No keygen authorities.

Keys may encode semantics (e.g. Taproot, pay-to-contract)
where KOSK is insufficient for security!

11 / 15



Multisignatures

Consider Schnorr multisignatures with combined keys of the
form P =

∑
P i .

Vulnerable to rogue-key attacks where one participant cancels
others’ keys.

Bitcoin’s Taproot uses keys of the form P = P ′ + H(P ′‖c)G
which admits a new form of rogue-key attack.

KOSK cannot protect against the latter!

12 / 15



Multisignatures

Derandomization of the form k = H(x‖c) no longer works.

In a multi-round protocol need to consider replay attacks,
parallel attacks, VM forking, etc.

General ZKPs can save us here. More R&D needed.

13 / 15



Threshold Signatures and Accountability

Accountability: ability to prove which specific set of signers
contributed to a threshold signature.

Constant-size non-accountable signatures. Log-sized
accountable signatures.

Can we close this gap?

14 / 15



Thank you.

Andrew Poelstra
apoelstra@blockstream.com

15 / 15


