
Monerokon Madness: Schnorr Schnadness

Andrew Poelstra
Director of Research, Blockstream

June 20, 2019

1 / 17



Schnorr Signatures

I Schnorr signatures are an alternate signature scheme to ECDSA

I Proposed for Bitcoin as part of Taproot

I Used in Monero since the Cryptonote days, courtesy of ed25519

2 / 17



Schnorr Signatures

Schnorr signatures have an especially simple formulation for single signers:

k ← $

e ← H(. . .)

s ← k − xe

3 / 17



Schnorr Signatures

Schnorr signatures have an especially simple formulation for multi-signers:

ki ← $

e ← H(. . .)

si ← ki − xie

4 / 17



Nonce Bias

I Like ECDSA, Schnorr signatures require an uniformly random nonce

I Any bias is deadly

I Publicly verifying unbiasedness is hard

5 / 17



Nonce Bias

I Idea: use RFC6979 to deterministically generate nonces.

I Great idea. But totally unverifiable.

6 / 17



Nonce Bias

I Idea: use sign to contract to mix randomness into an untrusted device’s nonce

I R → R + H(R‖$)

7 / 17



Nonce Bias

I But naively combining RFC6979 with s2c will lead to trivial secret key extraction

I (We all know “never reuse nonces”. But also, never use related nonces.)

I (Even on the same message.)

8 / 17



Multisignatures

I Schnorr multisignatures are easy!

I si = ki + xie

I 1. Add the nonces. 2. Add the signatures.

9 / 17



Multisignatures

I Rogue-key attacks require you randomize the keys and signatures

I Wagner’s algorithm requires you mix randomness from every key into every key

I It also requires precommitting to nonces before adding them (MuSig)

10 / 17



Multisignatures

I Again, mixing RFC6979 and multisignatures will lead to key extraction

I Naive or not. No way to do it

I Heh, well, maybe with sufficiently powerful ZKPs

11 / 17



Multisignatures

I Need fresh randomness for every signature. No RFC6979.

I Can we at least share nonces before choosing the message?

I No. Wagner again. (Jonas Nick, 2 days ago)

12 / 17



Threshold Signatures

I Schnorr threshold signatures are easy!

I Secret-share the keys. Replace keys with sums of shares.

I 1. Add the nonces. 2. Add the signatures.

13 / 17



Threshold Signatures

I First, all of the above problems apply.

I Then, make sure you have a new nonce for every signature, even for the same sig
with same (combined) key

14 / 17



Threshold Signatures

I If you need k honest participants, have k honest participants, but also have some
dishonest ones, can you recover? (Looks like it. But no.)

I Can you at least determine who was dishonest? (Not easy.)

I What if “dishonest” just means timing out? (Still not easy. Harder actually.)

15 / 17



Threshold Signatures

I Unrelatedly, provable security is much harder (public key biasing)

16 / 17



Thank You

Andrew Poelstra
monerokon@wpsoftware.net

17 / 17


