
What OP CANT We Do With OP CAT

Andrew Poelstra
Director, Blockstream Research

March 12, 2024



Contents

▶ Covenants.

▶ Everything else.



Covenants

Covenants, broadly, are about constraining the transaction context.

▶ CSV and CLTV do this in a super limited way.

▶ CHECKSIG et al appear to be even more limited.

▶ . . . but are they?



Covenants

(Tap)script is a language with 255 opcodes, in principle.

▶ Roughly 90 just push stuff, 90 are insta-fail/insta-suceed.

▶ Of the 80 or so “real” opcodes, exactly 5 access the transaction context:
▶ CHECKSIG, CHECKSIGVERIFY, CHECKSIGADD
▶ CHECKSEQUENCEVERIFY, CHECKLOCKTIMEVERIFY
▶ CAT would not.



Covenants

In a Blockchain context, we don’t compute but verify. There are not inputs and
outputs but statments and witnesses.



Covenants

So CHECKSIGVERIFY doesn’t take a signature/message/pubkey and output pass/fail.

Instead it makes a claim about the relationship between these three objects, and the
objects themselves are the witness.

The claim is not just “this key signed this message” but something algebraically
specific.

And OP CAT lets us be more specific.



Covenants

The Schnorr signing equation is s = k + ex , where x is a secret key, k is the “secret
nonce” and e is a hash of our transaction data.

▶ Setting the pubkey to G forces x = 1.

▶ With CAT we can also force k = 1.

▶ Then s = e + 1.

Using CAT again we can reconstruct e using explicit transaction data, and compensate
for that annoying +1.



Everything Else

CAT can also be used to implement:

▶ Big-integer arithmetic from 4-byte arithmetic (ADD and SUB anyway).

▶ Verifying PoW in Script.

▶ Lexicographic comparisons of arbitrary-length strings; simulating LEXCAT.

▶ One-time Schnorr signatures (which reveal secret keys).



Everything Else

It can be used to implement Lamport or Winternitz one-time signatures.

▶ Lamport public keys consist of 256 pairs of hashes.

▶ Signatures hash a message and reveal one preimage for each bit of the hash.

▶ Can be done in Script with CAT. (Jeremy Rubin 2021)

▶ Can sign transaction data or arbitrary messages.



Everything Else

Can be used to implement Merkle trees, which have some direct applications:

▶ Tree signatures (multisigs with millions or billions of keys).

▶ Trees of verification conditions (using SIZE to distinguish keys, hashes, etc).

▶ Compressing BitVM into fewer transactions.

▶ c.f. MERKLEBRANCHVERIFY (BIP 116) (Friedenbach, Alm, BtcDrak 2017)



Everything Else

Can be used to implement Merkle trees, which have some indirect applications:

▶ Any function with a small enough domain can be precomputed as a Merkelized
lookup table (e.g. 16-bit multiplication/division).

▶ Can extend 16-bit math to bignum math by splitting large values.

▶ Modular arithmetic? EC ops? ZK verifiers?

▶ Cut-and choose protocols?



Thank you

Original blog post about CAT covenants
https://wpsoftware.net/andrew/blog/cat-and-schnorr-tricks-ii.html

Implementation by rot13maxi
https://github.com/taproot-wizards/purrfect_vault

I am Andrew Poelstra catman@wpsoftware.net

https://wpsoftware.net/andrew/blog/cat-and-schnorr-tricks-ii.html
https://github.com/taproot-wizards/purrfect_vault

