
Fuzzing Simplicity: A Story

Andrew Poelstra

Blockstream Engineering Call
June 25, 2021



Preamble

Elements (from Bitcoin) has fuzzing infrastructure.

▶ Run without corpus in 2020 or so. Not since(?)

▶ No pre-built fuzzer input corpus. Didn’t know how to build it. (doc/fuzzer.md)

▶ Elements needs old boost, etc., which means nix.

▶ But lcov has weird expectations about its environment.



Preamble

Byron threw together a fuzz target (#1332 on ElementsProject/elements)

▶ PrecomputedTransactionData requires calling an Init method or it doesn’t
work.

▶ And actually it still won’t work; needs a complete list of input data or it will
silently not initialize the data.

▶ Also we have a tapEnv object that needs a valid CMR (can’t be obtained by the
fuzzer).



A First Start

Ok, so fix these things:

▶ Decode some input scriptpubkeys etc from the fuzzer.

▶ For the input under test, decode a Simplicity program, tweak a key, make a
scriptpubkey, etc.

▶ Just disable the CMR check.

After six days, achieve 36% coverage of the simplicity/ directory.



Idea: Generate, Don’t Decode

Coverage shows that we are only hitting a couple combinators and struggling to get
nontrivial things that typecheck.

▶ It’s hard for the fuzzer to generate valid diverse transactions from bytes.

▶ And even harder to generate Simplicity which is bit-aligned, and length prefixed
with bit-aligned prefix-free encoding.

▶ Also we don’t need to do taptweaks so we should not do taptweaks.



Idea: Generate, Don’t Decode

So instead take each byte from the fuzzer and switch on it, generating all valid
possibilities. Easy to do in Rust.

▶ Do this for every Elements transaction data structure including rangeproofs and
surjectionproofs (should upstream this..).

▶ Learn weird cool stuff about Elements consensus logic (did you know that
coinbase inputs cannot carry asset issuances?)

▶ File a bug against rust-elements about parsing pegin witnesses.



Idea: Generate, Don’t Decode

Then just link the Rust code to the C++ fuzzing harness. Easy.

▶ Both Rust and C++ can handle byteslices. C cannot. You have to go through C.

▶ Both Rust and C++ have RAII. C does not. You have to manually get your
destructors right.



Idea: Generate, Don’t Decode

Then just link the Rust code to the C++ fuzzing harness. Easy.

▶ rust-simplicity and Elements both have copies of libsimplicity. They are not the
same. And even if they were, the linker will still barf on them because C has no
namespaces and C has poisoned everything.

▶ So use a shared library for the Rust code. Good luck getting the LD LIBRARY PATH

var in the fuzzer Python script correct inside a Nix environment.



How to Generate Simplicity Programs

Fuzzer-guided recursive type generation is tricky.

▶ You need to cap your sizes somehow. If it’s possible to make arbitrarily-large
things the fuzzer will figure it out.

▶ Simplicity has exponentially-sized types and exponentially-sized values.

▶ No problem, we have static analysis. Except rust-simplicity actually evaluates
entire types before the static bounds are applied (rust-simplicity #221 and #222)



How to Generate Simplicity Programs

Simplicity types are weird.

▶ During type inference, types are not fully specified and do not have exact sizes.

▶ They can also be infinitely sized, and checking for this is expensive so we defer it.

▶ But finalization can’t happen until your whole program is built.



How to Generate Simplicity Programs

Simplicity types are weird.

▶ Programs must be 1-¿1 (take no input, take no output).

▶ “Inputs” are witnesses, “outputs” are aborts.

▶ To glue two programs together, easiest is to pair them. . . but this will blow up
your type sizes if you are not careful.



Misc

▶ Anyway I got up to 91.5% once but then stalled out, still not hitting all jets, and
with some seed inputs very slow.

▶ At one point honggfuzz started crashing because of something to do with
memcmp and I had to update it.

▶ Also my keyboard broke.



Future Work

▶ More covenant Script fragments (scheduled payouts, dividends, bonds)

▶ Reissuance covenants

▶ Improving Script for efficiency/expressivity

▶ Porting this all to Simplicity, zero-knowledge, crossing chains, · · ·


