
Efficient Accountable Multisignatures

Andrew Poelstra
apoelstra@blockstream.com ∗

2015-02-11 (commit 607815e)

Abstract

It is well-known that n-of-n Schnorr multisignatures can be produced in one round of

communication by adding ordinary Schnorr signatures. As observed by Boneh, this can be

extended from n-of-n to arbitrary monotone functions of the signers by use of a linear secret

sharing scheme.

However, such signatures have the property that they are signer indistinguishable; that is,

any signer set which is able to produce a signature produces one which is indistinguishable from

that produced by any other. (In fact, without extra knowledge of the verification key structure,

these signatures are indistinguishable from ordinary single-signer Schnorr signatures.) In some

contexts, it is important for auditability to be able to determine which signer set produced a given

signature.

We therefore study accountable multisignatures. The most straightforward way to do this

is to define as a verification key the concatenation of all signers’ verification keys along with

a description of the admissible signer sets, giving O(n) verification key size in the number of

signers. We significantly improve this in many cases.

License. This work is released into the public domain.
∗This work was partially supported by Blockstream.

1

1 Introduction

It is well-known that n-of-n Schnorr multisignatures can be produced in one round of
communication by adding ordinary Schnorr signatures. Specifically, Schnorr signatures[Sch89]
consist of a pair (s,R) where s = k−xe and R = kG where G is a generator of the underlying group,
k is a nonce and x is a secret key. If n signers first publish kiG to each other, they are each able to
produce a signature (si,R) where si = ki− xie and R = kiG. The the pair (s,R) = (∑si,R) is then a
valid Schnorr signature of the message m with verification key P = ∑xG.

As observed by Boneh1, this can be extended from n-of-n to arbitrary monotone functions of
the signers by use of a linear secret sharing scheme. Specifically, each signer distributes shares of
her xi and ki to every other signer. Then in the case that she does not participate in producing a10

signature, an admissible set of signers is able to construct xi−kie in her stead by applying the secret
sharing scheme. (Note that the signers combine the shares of xi and ki to produces shares of xi−kie

once they know e; thus neither xi nor ki is ever learned by anyone.)
However, the resultant signature is one with verification key ∑i xiG and public nonce ∑i kiG,

regardless of which signer set was used to produce it. This means that in contexts where knownledge
of the signer set is needed after the fact (e.g. in an escrowed Bitcoin transaction where it may
be of legal consequence whether the escrow agent was involved in moving some coins), these
multisignatures are inappropriate.

In order to produce a signature for which the signer set can be identified, the most natural thing
to do is to have each signer produce a verification key Pi, and publish the multisignature verification20

key as {Pi} along with a description the admissible signer sets. Then a multisignature of a message
m by a signer set S consists of individual signatures σi by each signer i ∈ S along with a description
of S. However, our verification key size is then linear in the total number of signers and the signature
size is linear in the size of S. By putting the full keyset {Pi} in a Merkle tree, the keysize can be
improved to logarithmic in the number of signers n, at the cost of making signatures have size
n log |S| (since each signer must provide a proof that her key is in the list).

An improvement to this scheme is to produce a n-of-n verification key ∑i∈S xiG for every
admissible set S, and publish these keys. For a simple k-of-n threshold multisignature there are(n

k

)
admissible subsets, so by putting these keys in a Merkle tree we obtain a constant verification

key size (just a Merkle root) and log
(n

k

)
signature size.30

However, this scheme requires the precomputation of
(n

k

)
sums of verification keys, which grows

as a degree-k polynomial in n, which is prohibitive for cases as small as n = 30, k = 15.
Instead, we propose a scheme for threshold signatures in which the verification key consists of

only n− k+ 1 keys and signatures require only a list of (n− k+ 1) small integers to identify the
signer set and its key. The way it works is essentially to publish a basis of the linear space spanned
by the keys corresponding to every signer set, and for signatures to then identify keys by giving
coefficients of linear combinations of this basis.

1Dan Boneh, personal communication, 2013.

2

2 Construction

As a first step we give the construction only for threshold signatures. Let S = [1,n] be a set of
n signers with individual keypairs (xi,Pi = xiG). Suppose that any k of n signers are allowed to40

produce a signature. Then we compute (n− k+1) points Qi for i = 0, . . . ,n− k as follows:

Qi =
n

∑
j=1

jiPi

Then let S′ ⊆ S be an admissible set of signers, i.e. |S′| ≥ k. To produce a signature, they act as
follows:

1. As |S\S′| ≤ n− k, they can compute a polynomial

p(x) = cn−kxn−k + cn−k−1xn−k−1 + · · ·+ c0

such that p(i) = 0 exactly when i ∈ S\S′. The signers compute

Q =
n−k

∑
i=0

ciQi =
n

∑
j=1

p(j)Pi

We observe that this is a linear sum of the Pi’s which has nonzero coefficient of Pi exactly
when i ∈ S.

2. Each signer i ∈ S′ computes a random nonce ki and sents kiG to the other signers.

3. They all compute R = ∑i∈S′ p(i)kiG and e = H(m,e). Each one computes si = xi− kie.

4. Then (s,R) = (∑i∈S′ p(i)si,R) is a valid signature with verification key Q.50

The complete signature consists of the pair (s,R) along with a description of p.

2.1 Correctness

2.2 Security

3

References

[Sch89] C. P. Schnorr, Efficient identification and signatures for smart cards, Proceedings
of CRYPTO ’89, 1989, ftp://utopia.hacktic.nl/pub/mirrors/Advances%20in%
20Cryptology/HTML/PDF/C89/239.PDF.

4

ftp://utopia.hacktic.nl/pub/mirrors/Advances%20in%20Cryptology/HTML/PDF/C89/239.PDF
ftp://utopia.hacktic.nl/pub/mirrors/Advances%20in%20Cryptology/HTML/PDF/C89/239.PDF

	Introduction
	Construction
	Correctness
	Security

