
Mimblewimble: Private, Massively-Prunable
Blockchains

Andrew Poelstra

grindelwald@wpsoftware.net

January 27, 2016

1 / 49



What is Mimblewimble?

Mimblewimble is a design for a blockchain-based ledger that is
very different from Bitcoin.

In Bitcoin transactions, old outputs sign new outputs; outputs
have “script pubkeys” that are independent of each other. In
Mimblewimble transactions, outputs have only EC pubkeys,
and the difference between new outputs’ keys and old ones’ is
multisigned by all transacting parties.

These outputs, or “transaction kernels”, are the only thing
that needs to be retained in the blockchain.

Mimblewimble outputs (and inputs) are inherently scriptless.

2 / 49



What is Mimblewimble?

Mimblewimble is a design for a blockchain-based ledger that is
very different from Bitcoin.

In Bitcoin transactions, old outputs sign new outputs; outputs
have “script pubkeys” that are independent of each other. In
Mimblewimble transactions, outputs have only EC pubkeys,
and the difference between new outputs’ keys and old ones’ is
multisigned by all transacting parties.

These outputs, or “transaction kernels”, are the only thing
that needs to be retained in the blockchain.

Mimblewimble outputs (and inputs) are inherently scriptless.

3 / 49



What is Mimblewimble?

Mimblewimble is a design for a blockchain-based ledger that is
very different from Bitcoin.

In Bitcoin transactions, old outputs sign new outputs; outputs
have “script pubkeys” that are independent of each other. In
Mimblewimble transactions, outputs have only EC pubkeys,
and the difference between new outputs’ keys and old ones’ is
multisigned by all transacting parties.

These outputs, or “transaction kernels”, are the only thing
that needs to be retained in the blockchain.

Mimblewimble outputs (and inputs) are inherently scriptless.

4 / 49



What is Mimblewimble?

Mimblewimble is a design for a blockchain-based ledger that is
very different from Bitcoin.

In Bitcoin transactions, old outputs sign new outputs; outputs
have “script pubkeys” that are independent of each other. In
Mimblewimble transactions, outputs have only EC pubkeys,
and the difference between new outputs’ keys and old ones’ is
multisigned by all transacting parties.

These outputs, or “transaction kernels”, are the only thing
that needs to be retained in the blockchain.

Mimblewimble outputs (and inputs) are inherently scriptless.

5 / 49



History

04:30 UTC, August 2nd, 2016: “Tom Elvis Jedusor” posts a
.onion link to a text file on IRC and disappears

Next morning: myself and Bryan Bishop verify it’s actually
just text and rehost it.

Following week: discussion on Reddit with Greg Sanders and
others leads to understanding Mimblewimble’s trust model,
and hints that the new crypto has merit.

October 8th: paper shows Avi Kularni’s and my work
extending/formalizing this; presented at Scaling Bitcoin Milan

6 / 49



History

04:30 UTC, August 2nd, 2016: “Tom Elvis Jedusor” posts a
.onion link to a text file on IRC and disappears

Next morning: myself and Bryan Bishop verify it’s actually
just text and rehost it.

Following week: discussion on Reddit with Greg Sanders and
others leads to understanding Mimblewimble’s trust model,
and hints that the new crypto has merit.

October 8th: paper shows Avi Kularni’s and my work
extending/formalizing this; presented at Scaling Bitcoin Milan

7 / 49



History

04:30 UTC, August 2nd, 2016: “Tom Elvis Jedusor” posts a
.onion link to a text file on IRC and disappears

Next morning: myself and Bryan Bishop verify it’s actually
just text and rehost it.

Following week: discussion on Reddit with Greg Sanders and
others leads to understanding Mimblewimble’s trust model,
and hints that the new crypto has merit.

October 8th: paper shows Avi Kularni’s and my work
extending/formalizing this; presented at Scaling Bitcoin Milan

8 / 49



History

04:30 UTC, August 2nd, 2016: “Tom Elvis Jedusor” posts a
.onion link to a text file on IRC and disappears

Next morning: myself and Bryan Bishop verify it’s actually
just text and rehost it.

Following week: discussion on Reddit with Greg Sanders and
others leads to understanding Mimblewimble’s trust model,
and hints that the new crypto has merit.

October 8th: paper shows Avi Kularni’s and my work
extending/formalizing this; presented at Scaling Bitcoin Milan

9 / 49



History

At 23:47 UTC, October 20, “Ignotus Peverell” appeared on
IRC announcing a project to implement MimbleWimble.

A few minutes later, Bryan Bishop called me to tell me to join
the conversation. I pointed out that aggregate signatures give
space savings on top of the Voldemort scheme, even without
new crypto.

Other Harry Potter characters arrived over the next few
weeks; the project continues to move forward. Though I’ve
been involved with the project, I have not contributed any
code. I am certainly not Ignotus Peverell.

January 17th, 2017: I meet with Ethan Heilman of TumbleBit
fame. We go back and forth on Lightning, ZKCP, etc., and
discover a powerful new primitive to get all these things on
MimbleWimble.

The next day, Ruben Somsen messaged me on Reddit
explaining how to get non-expiring bidirectonal channels.

10 / 49



History

At 23:47 UTC, October 20, “Ignotus Peverell” appeared on
IRC announcing a project to implement MimbleWimble.

A few minutes later, Bryan Bishop called me to tell me to join
the conversation. I pointed out that aggregate signatures give
space savings on top of the Voldemort scheme, even without
new crypto.

Other Harry Potter characters arrived over the next few
weeks; the project continues to move forward. Though I’ve
been involved with the project, I have not contributed any
code. I am certainly not Ignotus Peverell.

January 17th, 2017: I meet with Ethan Heilman of TumbleBit
fame. We go back and forth on Lightning, ZKCP, etc., and
discover a powerful new primitive to get all these things on
MimbleWimble.

The next day, Ruben Somsen messaged me on Reddit
explaining how to get non-expiring bidirectonal channels.

11 / 49



History

At 23:47 UTC, October 20, “Ignotus Peverell” appeared on
IRC announcing a project to implement MimbleWimble.

A few minutes later, Bryan Bishop called me to tell me to join
the conversation. I pointed out that aggregate signatures give
space savings on top of the Voldemort scheme, even without
new crypto.

Other Harry Potter characters arrived over the next few
weeks; the project continues to move forward. Though I’ve
been involved with the project, I have not contributed any
code. I am certainly not Ignotus Peverell.

January 17th, 2017: I meet with Ethan Heilman of TumbleBit
fame. We go back and forth on Lightning, ZKCP, etc., and
discover a powerful new primitive to get all these things on
MimbleWimble.

The next day, Ruben Somsen messaged me on Reddit
explaining how to get non-expiring bidirectonal channels.

12 / 49



History

At 23:47 UTC, October 20, “Ignotus Peverell” appeared on
IRC announcing a project to implement MimbleWimble.

A few minutes later, Bryan Bishop called me to tell me to join
the conversation. I pointed out that aggregate signatures give
space savings on top of the Voldemort scheme, even without
new crypto.

Other Harry Potter characters arrived over the next few
weeks; the project continues to move forward. Though I’ve
been involved with the project, I have not contributed any
code. I am certainly not Ignotus Peverell.

January 17th, 2017: I meet with Ethan Heilman of TumbleBit
fame. We go back and forth on Lightning, ZKCP, etc., and
discover a powerful new primitive to get all these things on
MimbleWimble.

The next day, Ruben Somsen messaged me on Reddit
explaining how to get non-expiring bidirectonal channels.

13 / 49



History

At 23:47 UTC, October 20, “Ignotus Peverell” appeared on
IRC announcing a project to implement MimbleWimble.

A few minutes later, Bryan Bishop called me to tell me to join
the conversation. I pointed out that aggregate signatures give
space savings on top of the Voldemort scheme, even without
new crypto.

Other Harry Potter characters arrived over the next few
weeks; the project continues to move forward. Though I’ve
been involved with the project, I have not contributed any
code. I am certainly not Ignotus Peverell.

January 17th, 2017: I meet with Ethan Heilman of TumbleBit
fame. We go back and forth on Lightning, ZKCP, etc., and
discover a powerful new primitive to get all these things on
MimbleWimble.

The next day, Ruben Somsen messaged me on Reddit
explaining how to get non-expiring bidirectonal channels.

14 / 49



Mimblewimble Transactions

A Mimblewimble transaction is the following data:

Inputs (references to old outputs).

Outputs: confidential transaction outputs (group elements,
which blind and commit to amounts), plus rangeproofs.

Kernel: algebraically, difference between outputs and inputs
(group element); morally a multisignature key for all
transacting parties.

Kernel signature: the kernel must sign itself to prove that the
transaction is honestly constructed; by signing other
blockchain-enforced data we can add additional functionality
(e.g. locktimes).

15 / 49



Mimblewimble Transactions

A Mimblewimble transaction is the following data:

Inputs (references to old outputs).

Outputs: confidential transaction outputs (group elements,
which blind and commit to amounts), plus rangeproofs.

Kernel: algebraically, difference between outputs and inputs
(group element); morally a multisignature key for all
transacting parties.

Kernel signature: the kernel must sign itself to prove that the
transaction is honestly constructed; by signing other
blockchain-enforced data we can add additional functionality
(e.g. locktimes).

16 / 49



Mimblewimble Transactions

A Mimblewimble transaction is the following data:

Inputs (references to old outputs).

Outputs: confidential transaction outputs (group elements,
which blind and commit to amounts), plus rangeproofs.

Kernel: algebraically, difference between outputs and inputs
(group element); morally a multisignature key for all
transacting parties.

Kernel signature: the kernel must sign itself to prove that the
transaction is honestly constructed; by signing other
blockchain-enforced data we can add additional functionality
(e.g. locktimes).

17 / 49



Mimblewimble Transactions

18 / 49



Mimblewimble Transactions

19 / 49



Mimblewimble Transactions

20 / 49



Mimblewimble Transactions

21 / 49



Mimblewimble Transactions

22 / 49



Mimblewimble Transactions

23 / 49



Mimblewimble Transactions

24 / 49



Mimblewimble Transactions

25 / 49



Scaling: Real Numbers

In Bitcoin there are 150 million transactions with about 350
million outputs, and 45 million of which are unspent.

This takes about 100Gb of space on disk today; with CT this
would be over 1Tb!

MimbleWimble gives us CT and requires storing: 15Gb of
transaction kernels, headers etc.; 2Gb of unspent outputs, and
100Gb of UTXO rangeproofs.

In pre-segwit Bitcoin, none of this is separable “witness data”
which can be dropped in exchange for trust. In MW the
rangeproofs are, leaving less than 20Gb of normative
blockchain space.

26 / 49



Scaling: Real Numbers

In Bitcoin there are 150 million transactions with about 350
million outputs, and 45 million of which are unspent.

This takes about 100Gb of space on disk today; with CT this
would be over 1Tb!

MimbleWimble gives us CT and requires storing: 15Gb of
transaction kernels, headers etc.; 2Gb of unspent outputs, and
100Gb of UTXO rangeproofs.

In pre-segwit Bitcoin, none of this is separable “witness data”
which can be dropped in exchange for trust. In MW the
rangeproofs are, leaving less than 20Gb of normative
blockchain space.

27 / 49



Scaling: Real Numbers

In Bitcoin there are 150 million transactions with about 350
million outputs, and 45 million of which are unspent.

This takes about 100Gb of space on disk today; with CT this
would be over 1Tb!

MimbleWimble gives us CT and requires storing: 15Gb of
transaction kernels, headers etc.; 2Gb of unspent outputs, and
100Gb of UTXO rangeproofs.

In pre-segwit Bitcoin, none of this is separable “witness data”
which can be dropped in exchange for trust. In MW the
rangeproofs are, leaving less than 20Gb of normative
blockchain space.

28 / 49



Scaling: Real Numbers

In Bitcoin there are 150 million transactions with about 350
million outputs, and 45 million of which are unspent.

This takes about 100Gb of space on disk today; with CT this
would be over 1Tb!

MimbleWimble gives us CT and requires storing: 15Gb of
transaction kernels, headers etc.; 2Gb of unspent outputs, and
100Gb of UTXO rangeproofs.

In pre-segwit Bitcoin, none of this is separable “witness data”
which can be dropped in exchange for trust. In MW the
rangeproofs are, leaving less than 20Gb of normative
blockchain space.

29 / 49



Trust Model: Blockchain

It should be verifiable that

A transaction, once committed to a block, cannot be reversed
without doing enough work to rewrite the block (and all its
descendants).

The current state of all coins reflects zero net theft and
inflation.

The exact structure of each individual transaction does not
need to be publicly verifiable.

30 / 49



Trust Model: Blockchain

It should be verifiable that

A transaction, once committed to a block, cannot be reversed
without doing enough work to rewrite the block (and all its
descendants).

The current state of all coins reflects zero net theft and
inflation.

The exact structure of each individual transaction does not
need to be publicly verifiable.

31 / 49



Trust Model: Blockchain

It should be verifiable that

A transaction, once committed to a block, cannot be reversed
without doing enough work to rewrite the block (and all its
descendants).

The current state of all coins reflects zero net theft and
inflation.

The exact structure of each individual transaction does not
need to be publicly verifiable.

32 / 49



Claim or Refund

MimbleWimble supports Information ⇔ Money

Kernels sign not only themselves; but also (optionally) a
locktime and a hash. A valid transaction must include the
preimage of this hash.

To do a hash-locktimed transaction, buying party sends coins
to a 2-of-2 multisig output, conditioned on the seller signing a
transaction to return the money at a later block.

The buyer then signs a transaction sending the money to the
seller, signing the hash she wants the preimage to.

The seller, to complete the transaction and take the coins,
must reveal the preimage.

This primitive is the basis of: cross-chain atomic swaps,
ZKCP’s, Lighting Channels, TumbleBit, and more.

33 / 49



Claim or Refund

MimbleWimble supports Information ⇔ Money

Kernels sign not only themselves; but also (optionally) a
locktime and a hash. A valid transaction must include the
preimage of this hash.

To do a hash-locktimed transaction, buying party sends coins
to a 2-of-2 multisig output, conditioned on the seller signing a
transaction to return the money at a later block.

The buyer then signs a transaction sending the money to the
seller, signing the hash she wants the preimage to.

The seller, to complete the transaction and take the coins,
must reveal the preimage.

This primitive is the basis of: cross-chain atomic swaps,
ZKCP’s, Lighting Channels, TumbleBit, and more.

34 / 49



Claim or Refund

MimbleWimble supports Information ⇔ Money

Kernels sign not only themselves; but also (optionally) a
locktime and a hash. A valid transaction must include the
preimage of this hash.

To do a hash-locktimed transaction, buying party sends coins
to a 2-of-2 multisig output, conditioned on the seller signing a
transaction to return the money at a later block.

The buyer then signs a transaction sending the money to the
seller, signing the hash she wants the preimage to.

The seller, to complete the transaction and take the coins,
must reveal the preimage.

This primitive is the basis of: cross-chain atomic swaps,
ZKCP’s, Lighting Channels, TumbleBit, and more.

35 / 49



Claim or Refund

MimbleWimble supports Information ⇔ Money

Kernels sign not only themselves; but also (optionally) a
locktime and a hash. A valid transaction must include the
preimage of this hash.

To do a hash-locktimed transaction, buying party sends coins
to a 2-of-2 multisig output, conditioned on the seller signing a
transaction to return the money at a later block.

The buyer then signs a transaction sending the money to the
seller, signing the hash she wants the preimage to.

The seller, to complete the transaction and take the coins,
must reveal the preimage.

This primitive is the basis of: cross-chain atomic swaps,
ZKCP’s, Lighting Channels, TumbleBit, and more.

36 / 49



Claim or Refund

MimbleWimble supports Information ⇔ Money

Kernels sign not only themselves; but also (optionally) a
locktime and a hash. A valid transaction must include the
preimage of this hash.

To do a hash-locktimed transaction, buying party sends coins
to a 2-of-2 multisig output, conditioned on the seller signing a
transaction to return the money at a later block.

The buyer then signs a transaction sending the money to the
seller, signing the hash she wants the preimage to.

The seller, to complete the transaction and take the coins,
must reveal the preimage.

This primitive is the basis of: cross-chain atomic swaps,
ZKCP’s, Lighting Channels, TumbleBit, and more.

37 / 49



Claim or Refund

MimbleWimble supports Information ⇔ Money

Kernels sign not only themselves; but also (optionally) a
locktime and a hash. A valid transaction must include the
preimage of this hash.

To do a hash-locktimed transaction, buying party sends coins
to a 2-of-2 multisig output, conditioned on the seller signing a
transaction to return the money at a later block.

The buyer then signs a transaction sending the money to the
seller, signing the hash she wants the preimage to.

The seller, to complete the transaction and take the coins,
must reveal the preimage.

This primitive is the basis of: cross-chain atomic swaps,
ZKCP’s, Lighting Channels, TumbleBit, and more.

38 / 49



Secret Atomic Swaps

For atomic swaps, we are exchanging a signature on one
transaction for a signature on another.

This can be done algebraically such that the two signatures
are not related in a publicly verifiable way (and is deniable)

Since the locktimed transaction never touches the blockchain
unless something goes wrong, the default case is that the
atomic swap is indistinguishable from any other transaction.

39 / 49



Secret Atomic Swaps

For atomic swaps, we are exchanging a signature on one
transaction for a signature on another.

This can be done algebraically such that the two signatures
are not related in a publicly verifiable way (and is deniable)

Since the locktimed transaction never touches the blockchain
unless something goes wrong, the default case is that the
atomic swap is indistinguishable from any other transaction.

40 / 49



Secret Atomic Swaps

For atomic swaps, we are exchanging a signature on one
transaction for a signature on another.

This can be done algebraically such that the two signatures
are not related in a publicly verifiable way (and is deniable)

Since the locktimed transaction never touches the blockchain
unless something goes wrong, the default case is that the
atomic swap is indistinguishable from any other transaction.

41 / 49



Next Steps

Development, development, development!

Wallet support: multisig rangeproofs, triggers, secret atomic
swaps, etc.

ValueShuffle

42 / 49



Next Steps

Development, development, development!

Wallet support: multisig rangeproofs, triggers, secret atomic
swaps, etc.

ValueShuffle

43 / 49



Next Steps

Development, development, development!

Wallet support: multisig rangeproofs, triggers, secret atomic
swaps, etc.

ValueShuffle

44 / 49



Open Problems

Smaller rangeproofs? Aggregation of rangeproofs?

Peer-to-peer layer that avoids monitoring (ValueShuffle?)

Quantum resistance

45 / 49



Open Problems

Smaller rangeproofs? Aggregation of rangeproofs?

Peer-to-peer layer that avoids monitoring (ValueShuffle?)

Quantum resistance

46 / 49



Open Problems

Smaller rangeproofs? Aggregation of rangeproofs?

Peer-to-peer layer that avoids monitoring (ValueShuffle?)

Quantum resistance

47 / 49



Thank You

Andrew Poelstra <grindelwald@wpsoftware.net>

48 / 49


