Schnorr Signatures are Non-Malleable in the Random Oracle Model

Andrew Poelstra

12 Feb 2014

Schnorr signatures. The Schnorr signature cryptosystem over a group G, |G| = q, is defined as follows. Let $g \in G$ be some generator. Let H be a hash function, modelled as a random oracle, whose image is $\{0, \dots, x-1\}$. All of G, q, g, H are parameters of the cryptosystem and considered public knowledge.

- *Key generation*. Choose $x \in \{1, ..., q-1\}$ randomly. Then g^x is the public key, x is the secret key.
- *Signing*. Let *m* be the message to sign. Choose $k \in \{1, ..., q-1\}$ randomly. Let $e = H(m||g^k)$, s = k xe. Then (e, s) is the signature.
- Verification. Given (e,s), compute $g^k = (g^x)^e g^s$. (Note that k is unknown to the verifier, we are just calling this g^k for consistency with the previous step.) Then $H(m||g^k)$ can be calculated and confirmed to be e.

Malleability. We consider the advantange of a *malleating adversary* \mathscr{A} to be the probability that $g^{s'}g^{xe'}=r^J$ and e'=H(m||r'), where (s',e') is produced by \mathscr{A} given a message m and valid signatures $(s_i,e_i), i=1,\ldots,n$, for m. We require $(s',e')\neq (s_i,e_i)$ and allow \mathscr{A} to choose n.

Theorem 1. A malleating adversary \mathcal{A} with non-negligible advantage ε can be used to construct an ordinary forging adversary \mathcal{B} with advantage ε .

Proof. We first demonstrate that if $(s',e') \neq (s_i,e_i)$, then we must have $e' \neq e_i$. To this end, suppose that $H^A(m||r') = e' = e_i = H^A(m||r_i)$. Then since H^A is a random oracle we must have $r' = r_i$ except with negligible probability. But since $g^{s_i} = (g^x)^{e_i} r = (g^x)^{e'} r' = g^{s'}$ we must have $s_i = s'$. This contradicts $(s',e') \neq (s_i,e_i)$. (The point of this comment is that $\mathscr A$ is forced to consult the oracle H to compute e'; he cannot simply modify s_i .)

Then \mathcal{B} operates by running \mathcal{A} . The hash function that \mathcal{A} sees is a random oracle H^A controlled by \mathcal{B} . Suppose we are given a public key g^{ℓ} and message m, and that \mathcal{B} 's goal is to output a valid signature (S,E) such that $g^S(g^{\ell})^E = R$ where H(m||R) = E. \mathcal{B} operates as follows.

1. First, \mathscr{A} chooses n requests n valid signatures (s_i, e_i) from \mathscr{B} . To respond to each query, \mathscr{B} chooses a pair (s_i, e_i) at random from $\{0, \dots, q-1\}^2$. Also, \mathscr{B} sets $H^A(m||g^s(g^\ell)^e) = e$ so

that \mathscr{A} will view this as a valid signature under the public key g^{ℓ} . Notice that since e_i is chosen uniformly at random, this is consistent with \mathscr{A} 's view that H^A is a random oracle.

- 2. Next, \mathscr{A} generates a malleated signature (s',e'). Write $r=g^{s'}(g^\ell)^{e'}$. If (s',e') does not satisfy $H^A(m||r)$, then \mathscr{B} quits; the attack fails. This occurs with probability $1-\varepsilon$. Otherwise, since $e'\neq e$ and $e'=H^A(m||r)$, to produce e' with non-negligible probability \mathscr{A} must call H^A with input m||r. \mathscr{B} responds to this query with H(m||r), that is, \mathscr{B} gives \mathscr{A} the
- 3. At this point, we claim that the pair (s', e') is a valid forged signature of m. To see that this is so, notice that

$$H(m||g^{s'}(g^{\ell})^{e'}) = H(m||r) = H^{A}(m||r) = e'.$$

This completes the proof.

"real" hash of m||r|.