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1 Introduction and Definitions

If A is a set of positive integers with positive upper uniform density, then A must contain arbitrarily large
cubes, i.e., sets of the form

ha;y1;y2; : : : ;ymi= fa+ ε1y1 + � � �+ εmym : ε j = 0 or 1;1� j � mg (1)

This fact is an essential step in Szemerédi’s proof that any set with positive upper uniform density con-
tains arbitrarily large arithmetic progressions.

In this paper we consider several other properties of a set of positive integers, each of which general-
izes the notion of having arbitrarily long arithmetic progresssions. We call these properties QP (having
arbitrarily large “quasi-progressions"), CP (having arbitrarily large “combinatorial progressions"), and
DW (having arbitrarily large “descending waves"). The definitions of these properties will appear at the
end of this section.

Let us denote by AP and C the properties of having arbitrarily long arithmetic progressions and
arbitrarily large cubes, respectively. Then, in Section 2, we will show that

AP) QP)CP)C ) DW;

and that none of these implications is reversible.
By using Szemerédi’s method for obtaining cubes, we can show that, if the sum of the reciprocals of

the elements of a set A is infinite, then A has property C. While we cannot, at present, show that a set
with infinite reciprocal sum must have properties CP or QP, we have a good excuse for the last failure:
we show that Erdős’ famous conjecture (that every set of positive integers with infinite reciprocal sum
has property AP) is equivalent to the statement that every set with infinite reciprocal sum has property
QP. These are done in Section 3.

In Section 4 we consider descending waves. We obtain upper and lower bounds for f (k), the smallest
integer such that, if f1;2; : : : ; f (k)g = A[B, then A or B contains a k-term descending wave. We also
obtain an upper bound for

maxfjSj : S � f1;2; : : : ;mg and S contains no k-term descending waveg:
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(The upper bound is ck(logm)k�2: )
We also consider in Section 4 how the growth rate of a sequence fang influences the presence of

descending waves in the set fang. We show that arbitrarily long descending waves must be present even
in certain sets with rather large growth rates, but that sets fang with an+1=an � 1+ ε for all n have
descending waves of bounded length.

We conclude the paper with some remarsk and questions in Section 5.
We now define the properties QP;CP and DW . A finite sequence x1 < x2 < � � �< xk will be called a

k-term quasi-progression of diameter d (abbreviated k�QP(d)) if

Diamfxi+1� xi : 1� i� k�1g � d;

i.e.,
9N such that N � xi+1� xi � N +d for 1� i� k�1:

A set of positive integers has property QP if, for some fixed d, the set contains a k�QP(d) for each k� 1.
Noting that a k-term arithmetic progression is just a k�QP(0) we get immediately that AP) QP.

The sequence x1 < x2 < � � � < xk will be called a k-term combinatorial progression of order d (ab-
breviated k�CP(d)) if

jf[xi+1� xi] : 1� i� k�1gj � d:

(The integer function is present for the cases, mentioned below, when the xi may not be integers.) A set
of positive integers has property CP if, for some fixed d, the set contains a k�CP(d) for each k � 1.
Cleraly, when the xi are integers, a k�QP(d) is a k�CP(d +1) and so QP)CP.

Finally, a sequence x1 < x2 < � � �< xk is called a k-term descending wave (k�DW ) if the difference
sequence is non-increasing, i.e.,

x j+1� x j � x j+2� x j+1; for 1� j � k�2:

If a set of positive integers contains arbitrarily large descending waves then we say that it has property
DW .

We observe that the definitions of k�QP(d), k�CP(d), and k�DW can be applied to a sequence
x1 < x2 < � � �< xk even if the terms of this sequence are not integer valued. Thus a countable set of real
numbers R = fr1 < r2 < � � �g can be said to have properties QP;CP; or DW . However, it is easy to prove
that, if R satisfies the reasonable condition that ri+1� ri � 1 for sufficiently large i, then R has property
QP;CP;DW exactly when the corresponding set of integers A = f[ri] : i� 1g has the same property.

2 Relations between AP, QP, CP, C, DW

Let us restate our claim in the form of a theorem. The proof will occupy the remainder of this section.

Theorem 1. AP) QP)CP)C ) DW, and none of these implications is reversible.

Proof. We have already seen that AP)QP)CP. The implication C )DW is also easy to see: If a set
A contains the m-cube (1) above, where we may assume that y1 � y2 � �� � � ym, then A also contains the
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(m+1)�DW

a;a+ y1;a+ y1 + y2; � � �a+ y1 + y2 + � � �+ ym:

We proceed to prove CP ) C. This easily follows from the statement: For all m;d � 1, there exists
r = r(d;m) such that, if x1;x2; : : : ;xr is an r�CP(d), then fx1;x2; : : : ;xrg contains an m-cube. The proof
of this is by inductinon on m. For m = 1 we let r = 2. Any 2�CP(d) is a 1-cube. For m+ 1 we take
r = r(d;m+1) = t � r(d;m), where t is determined presently. Let r0 = r(d;m) and let x1;x2; : : : ;xtr0 be a
tr0�CP(d). Each block

xkr0+1;xkr0+2; : : : ;x(k+1)r0 for 0� k � t�1;

is an r0�CP(d) with the same set f f1; f2; : : : ; fdg of possible differences. By the inductive hypothesis,
each of these blocks contains an m-cube. Any generator yi of an m-cube in a block is of the form

fi1 + fi2 + � � �+ fi j ;

where j < r0. Here there are less than (d +1)r0 different generators and so less than (d +1)r0m m-tuples
of generators. Hence, if t = (d + 1)r0m, then two of the blocks in x1;x2; : : : ;xtr0 will have m-cubes with
the same set of generators. If these two are hxi;y1;y2; : : : ;ymi and hx j;y1;y2; : : : ;ymi with xi < x j, then

hxi;y1;y2; : : : ;ym;x j�xii

is an (m+1)-cube in fx1;x2; : : : ;xrg.
We now proceed to show that none of the reverse implications hold. First DW 6)C. Rearrange the

sequence 1;2;4;8; : : : ; of powers of two, forming a sequence d0;d1;d2; : : : ; which has arbitrarily long
decreasing blocks (e.g., 1,4,2,32,16,8,512,256,: : : ). Next define

a0 = 1; ai+1 = ai +di

and let A = fai : i � 0g. Clearly A has DW . If A contains a 2-cube hb;y1;y2i, then y1 = b+ y1 � b =

a j�ai = di +di+1 + � � �+d j�1 and y1 = b+ y1 + y2� (b+ y2) = at �as = ds +ds+1 + � � �+dt�1. Sums
of distinct powers of two are unique and so j = t which contradicts at > a j.

Proof that C 6)CP. Let A be the set of all positive integers whose decimal representation uses only
zeros and ones, i.e.,

A =

(
k : k =

N

∑
i=1

εi10i;εi = 0 or 1;N � 0;k > 0

)
:

It is clear from this definition that A has property C. Let b1 < b2 < b3 < � � �< bn be an increasing sequence
in A and suppose bi+1� bi = br+1� br, where i < r. It follows that there exists j, i < j < r, such that
b j+1�b j > bi+1�bi. Now assume that A has property CP for order d. If b1 < b2 < b3 < � � �< bn is an
n�CP(d) in A, then by assumption bi+1�bi can take on at most d different values. But if n is very large,
say n = d(d+1), we can find dd indices i with the same bi+1�bi and in between these indices d(d�1) other
indices j with a larger b j+1�b j, and so on. In this way we get more than d differences appearing in the
sequence fbig contrary to our supposition.

Next CP 6) QP. We will make use of remarkable sequence of zeros and ones, fz1;z2;z3; : : :g, which
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has the property that there do not exist five adjacent blocks of equal composition. (This means that, for
any a� 0 and d � 1, not all of the five numbers

d

∑
i=1

za+kd+i; 0� k � 4;

are the same.) The existence of such a sequence is due to J. Justin [4]. For each t � 1 let S(t) be the
following set of t positive integers,

S(t) = f5t + t + z1;5t +2t + z1 + z2; : : : ;5t + t2 + z1 + z2 + � � �+ ztg:

Let B(t) be the set tS(t) = ftx : x 2 S(t)g. One easily checks that the first member of S(t + 1) (resp.
B(t +1)) is more than twice as large as the greatest member of S(t) (resp. B(t)). Each B(t) is a t�CP(2)
since a difference is

t5t+(k+1)t2 + t(z1 + � � �+ zk+1)� (t5t + kt2 + t(z1 + � � �+ zk))

= t2 + tzk+1 = t2 or t2 + t:

We define A = B(1)[B(2)[ �� � . Clearly A has property CP. Now suppose that A has property QP

for diameter d. Let t0 > d. Let P = fb1 < b2 < b3 < � � � < bng be an n�QP(d) in A. Suppose fbig
intersects B(t1);B(t2); and B(t3), where t0 � t1 < t2 < t3. Let bi be a member of P\B(t1) and b j be the
largest member of P\B(t2). Then (b j+1�b j)� (bi+1�bi)> b j � (bi+1�bi)� bi > t15t1 > d and this
contradicts P being a QP(d). Hence, if n is sufficiently large, we may assume that P contains six terms,
bi;bi+1; : : : ;bi+5 in some B(t), where t � t0. Now, for a suitable u > v > w,

jb j+2�b j+1� (b j+1�b j)j
= jt5t +ut2 + t(z1 + � � �+ zu)�2(t5t + vt2 + t(z1 + � � �+ zv))

+ t5t +wt2 + t(z1 + � � �+ zw)j
= j(u+w�2v)t2 + t((zv+1 + � � �+ zu)� (zw+1 + � � �+ zv))j � d < t:

It follows that u� v = v�w and zv+1 + � � �+ zu = zw+1 + � � �+ zv so that the above six members of P

determine five adjacent blocks of fzig which have the same composition, a contradiction.
Finally we show that QP 6) AP. Here let A = S(1)[ S(2)[ S(3)[ �� � where S(t) is defined above.

Clearly A has QP since each S(t) is a t�QP(1). An argument similar to the above would show that, if
an arithmetic progression P = fb1 < b2 < b3 < � � �< bng, in A were sufficiently long, then P would have
to contain six terms in some S(t). This, in turn, would again produce five adjacent blocks of fzig which
have the same composition.

3 Sets with Infinite Reciprocal Sum

Here we prove the two results on sets with infinite reciprocal sum mentioned in the Introduction (Some
other results on sets with infinite reciprocal sum can be found in [1].)
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Theorem 2. The following two statements are equivalent:

1. (Erdős’ conjecture). If A is any set of positive integers such that the sum of the reciprocals of the

elements of A is infinite, then A property AP.

2. If A is any set of positive integers such that the sum of the reciprocals of the elements of A is

infinite, then A has property QP.

Proof. Clearly 1 ) 2. We show that “not 1" implies “not 2." Assume that A is a set of positive integers
with ∑i2A 1=i = ∞ and which contains no k-term arithmetic progression for a fixed k. We will construct a
set B with infinite reciprocal sum, which does not have property QP. We note that, for each n� 1, g� 0,
the set nA+g = fnai +g : i � 1g does not contain any k�QP(n�1). For otherwise we have elements
a1;a2; : : : ;ak in A with

N � (na j+1 +g)� (na j +g)� N +(n�1); 1� j � k�1;

which implies that all a j+1�a j are equal, contrary to assumption.
We construct finite sets B1;B2;B3; : : : ; as follows. Let B1 consist of enough terms of A so that

∑i2B1
1=i > 1. Having chosen B1;B2; : : : ;Bn�1, we let g� 3 �max(Bn�1) and Bn consist of enough terms

of nA+g so that

∑
i2Bn

1=i > 1:

We set B = B1[B2[B3[�� � , and note that Bn does not contain any k�QP(n�1) and that B has infinite
reciprocal sum. We need only show that, for each d � 0, B does not contain arbitrarily long QP(d). Let
S = fb1;b2; : : : ;btg be a t�QP(d) in B where, for some N � 1,

N � b j+1�b j � N +d; 1� j � t�1:

If i� 2 and bi;bi+1 belong to different sets Bn, then, for j < i,

N +d � bi+1�bi � 2bi � 2(b j+1�b j)� 2N:

It follows that, if S intersects with h+ 1 different sets Bn, then we would obtain N + d � 2hN, which
implies h � log2(d + 1). Hence, if B has property QP for diameter d then no t�QP(d) in B can meet
more than log2(d +1)+1 different sets Bn. Hence, by choosing t sufficiently large, we may assure that
S has at least k consecutive terms in some Bn where n� d +1. But these k terms are a k�QP(d) which
is a k�QP(n�1) in Bn. This contradiction completes the proof.

Theorem 3. If A is a set of positive integers with infinite reciprocal sum, then A has property C (and

therefore also property DW).

Proof. It is shown in [3, p. 19] that, if

α = 2+
p

3; λ (k) = α �n1�(1=2k);
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A = fa1 < a2 < � � � < atg, A � f1;2; : : : ;ng, and t � λ (k), then A contains a k-cube. Thus, if A =

fa1;a2;a3; : : :g is any set of positive integers which does not contain any k-cube, we get, for n � 1,
A(n)< λ (k), where A(n) = jA\f1;2; : : : ;ngj. Hence

n = A(an)< α �a1�(1=2k)
n ;

so that an � cn1+ε , where c and ε are positive constants. This implies that ∑n 1=an < ∞.

4 Descending Waves

We shall approach the problem of descending waves from several points of view. Our first is analogous
to a result of van der Waerden. Let f (k) be the smallest positive integer such that, if f1;2; : : : ; f (k)g is
2-colored, then there must be a monochromatic k�DW . Our first result bounds f (k) above and below.

Theorem 4. k2� k+1� f (k)� k3=3�4k=3+3:

Proof. For the lower bound, we need only observe that the 2-coloring

00 � � �0| {z }
k�1

11 � � �1| {z }
k�1

00 � � �0| {z }
k�2

11 � � �1| {z }
k�2

� � � 00|{z}
2

11|{z}
2

0|{z}
1

1|{z}
1

of f1;2; : : : ;k2� kg has no monochromatic k�DW .
For the upper bound we first prove a simple lemma: If B1;B2; : : : ;Bt are consecutive blocks of in-

tegers (i.e., 0 � b1 < b2 < � � � < bt+1, Bi = [bi + 1;bi+1]), jB1j � jB2j � � � � � jBt j, t � s2 � s+ 1, and
xi 2 Bi for 1 � i � t, then the set fx1;x2; : : : ;xtg contains an s�DW fxi1 ;xi2 ; : : : ;xisg with xis = xt and
xis � xis�1 > jBt�1j.

To see this, just let i j = t� (s� j)(s� j+1) for 1� j � s. Then xi1 ;xi2 ; : : : ;xis is an s�DW with the
last term = xt . This is easily shown by the following calculations:

i j+1� i j = 2(s� j);

xi j+1 � xi j > jBi j+1 j+ jBi j+2 j+ � � �+ jBi j+1�1j � (2(s� j)�1)jBi j+1 j
� jBi j+1 j+ jBi j+1 +1j+ jBi j+1+2j+ � � �+ jBi j+2 j � xi j+2 � xi j+1 :

Since is�1 = t�2, we obtain xis � xis�1 > jBt�1j.
Next we suppose that n� k3=3�4k=3+3 = d and that f1;2; : : : ;ng is 2-colored such that there is no

monochromatic k�DW . We partition the first d integers of this set into consecutive blocks of decreasing
order, B1;B2; : : : ;Bt , where t = k2�3k+4, as follows: jB1j= k; jB2j= jB3j= k�1; : : : ; jBt j= 1. Here,
in general, there will be 2 j blocks of length k� j for 1� j � k�2 (only one block, the first, of length k

and one block, the last, of length one.) Hence the number of blocks is 1+2+4+6+ � � �+2(k�2)+1= t.
Also, the number of consecutive integers contained in the union of all these blocks is, as stated,

k+1+
k�2

∑
j=1

2 j(k� j) =
k3

3
� 4k

3
+3:
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If Bu is of length k� s (s � 1) then u > 1+ 2+ 4+ � � �+ 2(s� 1) = s2 � s+ 1. It follows from the
assumption about the coloring and the above lemma that no block of our partition can be monochromatic.
For, supposing Bu to be the first monochromatic block (say all 1’s), if u = 1, then the k integers of B1

form a k�DW . On the other hand, if 1 < u� t, then each block which comes before Bu must contain an
integer colored 1 and, if jBuj= k� s, the lemma implies that there is an s�DW , x1;x2; : : : ;xs, of integers
colored 1 such that xs 2 Bu�1. Let xs+1;xs+2; : : : ;xk be the k� s elements of Bu. From the construction
used in the proof of the lemma, we see that xs� xs�1 > jBu�2j � jBu�1j � xs+1� xs. Hence x1;x2; : : : ;xk

is a monochromatic k�DW contrary to assumption. The theorem is proved by observing that Bt is
necessarily monochromatic.

If one defines f (k) requiring a monochromatic strict descending wave (i.e., the differences form a
strictly decreasing sequence d1 > d2 > � � � > dk�1), then the above method will yield lower and upper
bounds c1k3 and c2k4 respectively.

Further, if we consider the above method but use intervals each of length k, then we obtain the result:
If f1;2; : : : ;k3�3k2+4kg is 2-colored, then there are either k consecutive monochrome integers or there
is a monochromatic k�DW .

Next we proceed to find an upper bound on the order of a subset of f1;2; : : : ;ngwhich has no k�DW .

Theorem 5. Let S � f1;2; : : : ;2ng and suppose that S contains no k�DW where 3� k � n+2. Then

jSj � 2k�2
�

n
k�2

�
:

Proof. Since descending waves are invariant under translation we may assume that min(S)= 1. We begin
an induction at k = 3 by observing that, if S contains no 3�DW , then each interval It = f2t +1; : : : ;2t+1g,
0 � t � n�1, contains no more than one element of S (for, if a;b 2 It , a < b, then f1;a;bg would be a
3�DW ). Hence

jSj � n+1� 2n = 2
�

n
1

�
;

provided that n� 1 (i.e., k = 3� n+2).
Now fix k � 3 and let � f1;2; : : : ;2ng be a set which contains no (k+ 1)�DW . Then, as before,

It \S cannot contain any k�DW (since adjoining 1 to such a DW would give a (k+1)�DW in S). Thus
by the induction hypothesis we have, for k � t +2,

jS\f2t +1;2t +2; : : : ;2t+1gj � 2k�2
�

t
k�2

�
:

For k+1� n+2 we write

f1; : : : ;2ng= f1; : : : ;2k�2g[
n�1[

t=k�2

f2t +1; : : : ;2t+1g:
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Thus we obtain

jSj � 2k�2 +
n�1

∑
t=k�2

2k�2
�

t
k�2

�

= 2k�2
�

1+
�

n
k�1

��
� 2k�1

�
n

k�1

�
:

Three corollaries follow from Theorem 5.

Corollary 1. If m� 2k�2 and S is a subset of f1;2; : : : ;mg which contains no k�DW, then

jSj � 2k�1

(k�2)!
(log2 m)k�2:

Corollary 2. If an infinite sequence S = fa1 < a2 < a3 < � � �g contains no k�DW, then there is a

constant c > 1 (in fact, c = 2((k�2)!=2k�1)1=k�2
) such that, for at � 2k�2,

at � ct1=(k�2)
:

Hence, if for each ε > 0,
an < enε

for all sufficiently large n, then fang has DW . For example, if

an � en1= log logn

then fang has DW . Consequently, if fang is a sequence such that an � p(n) for infinitely many n, where
p(x) is a fixed polynomial, then fang has property DW . This last remark gives a proof, independent of
Theorem 3, that ∑A = 1=a = ∞ implies that A contains arbitrarily long descending waves.

Corollary 3. Define g(ε;k) to be the smallest n such that A � f1;2; : : : ;ng and jAj > εn imply that A

has a k�DW. Then for k � 4 and ε � 0:9 we have

k2� k
2ε

� g(ε;k)�
�

6e
ε

�k�2

:

Proof. The left-hand inequality follows by taking the set colored “1" in the construction at the beginning
of the proof of Theorem 4 as a subset of f1;2; : : : ; [(k2 � k)=2ε]g. For the right-hand inequality we
proceed as follows: Let n = [(6e=ε)k�2], A� f1;2; : : : ;ng, jAj> εn, and suppose that A has no k�DW .
From Corollary 1 above we get

εn < jAj � 2k�1

(k�2)!
(log2 n)k�2;

n
(log2 n)k�2 <

2k�1

ε(k�2)!
;
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which, using kke�k
p

2πke1=(12k+1) � k!, implies

p
2π(k�2)(1� (ε=6e)k�2)<

2
3

�
2ε

6
log2

6e
ε

�k�2

:

But this inequality is false if k � 4 and ε � 0:9.

For k = 3 and any ε , the beginning of the proof of Theorem 5 shows that if ε2t � t+1, then g(ε;3)�
2t .

We shall consider below the existence of descending waves contained in sequences fa1 < a2 < a3 <

� � �g where the an are real numbers and an+1 � an � 1 for all large n (see Section 1). The remarks
following Corollary 2 above show that if an increases slowly then fang has DW . On the other hand, the
next theorem shows that an cannot grow as an exponential and still have that property.

Theorem 6. For each real ε > 0, let k(ε) be the maximum, over all sequences A = fa1 < a2 < a3 < � � �g
with an+1=an � 1+ ε for all n, of the length of the longest descending wave in A. Then

[1=ε]+1� k(ε)� (1=ε)+2:

Proof. Let 0 < b0 < b1 < � � � < bt be a DW in such a sequence A. Then bt = (bt � bt�1)+ � � �+(b1�
b0)+b0 � t(bt �bt�1)+b0, so that

1� t
�

1� bt�1

bt

�
+

b0

bt
� t
�

1� 1
1+ ε

�
+

b0

bt
> t
�

ε

1+ ε

�
:

Therefore t < 1+1=ε , whence k(ε)< 1=ε +2.
For the lower bound, given ε < 1, define ai = i for i = 1;2; : : : ; t, where t = [1=ε] and at+k = t(1+ε)k

for k � 1. Then A satisfies the condition of the theorem and 1;2; : : : ; t; t(1+ ε) is a DW in A of length
[1=ε]+1. Hence k(ε)� [1=ε]+1.

The case where fang is an exponential sequence is special.

Theorem 7. Let p(ε) be the length of the longest DW in the sequence an = cn, where c = 1+ ε . Then

there exist constants A and B such that

A=
p

ε � p(ε)� B=
p

ε:

Proof. For the lower bound consider the sequence (with t +2 terms)

1;ct+1;c(t+1)+t ; : : : ;c(t+1)+t+(t�1)+���+1:

This is a DW if and only if, for each s, 1� s� t, we have

2� cs +
1

cs+1 :

These inequalities all hold if and only if

2� ct +
1

ct+1
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and this inequality is equivalent to ct � 1+
p

ε=c. (For t = 1 this inequality requires that ε � 1
2 (
p

5�
1) � 0:61 and that ε be smaller for larger values of t.) Hence, for given ε , say ε < 0:6, we may take
t = [log(1 +

p
ε=c)= log(c)]. This last quantity is asymptotic with 1=

p
ε . For ε < 0:6 we may let

A = 0:787.
For the upper bound we proceed as follows. First note that if cr1 ;cr2 ;cr3 is a 3�DW , then r3� r2 <

r2�r1. Let R = 1=
p

ε and let a1;a2; : : : ;ak be a DW in fcsg. Letting t = [R]+1 we get at �at�1 < at=R.
Write at = cr1 and at+1 = cr2 . Clearly cr2�r1 < (1=R)+1 so that

r2� r1 <
log((1=R)+1)

logc
� R:

It follows that k is less than, approximately, twice R.

The sequences an = exp(nε) of Corollary 2, as we shall see below, all have property DW even though
they are upper bounds for sequences which do not have DW . More precisely, we prove the following.

Theorem 8. For any ε > 0, there exists a sequence A = fang of positive integers such that A does not

have property DW and, for all large n, an < exp(nε). (Compare the remarks following Corollary 2.)

Proof. The sequence f2ng does not contain a 3�DW and 2n < exp(nε) for all ε � 1. Let N > 1 and put

A = AN = f2i(1)+2i(2)+ � � �+2i(N) : i(1)> i(2)> � � �> i(N)� 0g:

We first prove that if A = fang then an < exp(nδ ) for all large n, where δ > 1=N. Let an = 2i(1)+2i(2)+

� � �+2i(N) > 2i(1). Then

n = A(an)> A(2i(1)) =

�
i(1)�1

N

�
>C(i(1))N :

Hence i(1)< Dn1=N and
an < 2i(1)+1 = 2 �2i(1) < 2 �2Dn1=N

< enδ

for suitable constants C;D and all large n. Thus we choose N such that 1=N < ε . We can assume
inductively that AN�1 does not have property DW . Suppose AN has DW and let a1;a2; : : : ;aw be a
descending wave in AN . Write

at =
N

∑
s=1

2i(s;t) (t = 1;2; : : : ;w):

Note that i(1; t) � i(1; t + 1). If equality holds for arbitrarily long blocks, then these blocks determine
long DW s in AN�1 contrary to the inductive hypothesis. Hence we may assume (by taking w large
enough) that i(1; t)< i(1; t +1) occurs at least N+2 times. Clearly then we have i(1; t +1)�N > i(1;2)
for some t. Then

at+1�at > 2i(1;t+1)� (2i(1;t)+2i(1;t)�1 + � � �+2i(1;t)�N+1)

= 2i(1;t+1)� (2i(1;t)+1�2i(1;t)�N+1)

� 2i(1;t)�N+1 > 2i(1;2)+1 > a2�a1:
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This proves that AN does not have property DW .

The sets AN have rather irregular growth. The next theorem shows that if the growth pattern is
sufficiently regular, then the sequence has property DW . First note the following remarks: Let αi =

1+(1=2i). Then for all i� 1 we have (1=αi)+αi+1 < 2. If ε is small, then there exists a maximal q(ε)

such that, for i = 1;2; : : : ;q(ε), (1=a)+ b � 2 whenever αi � ε � a � αi and αi+1 � ε � b � αi. It is
clear that q(ε)! ∞ as ε ! 0+.

Theorem 9. Let B = fb1 < b2 < b3 < � � �g be a set with the following property: For each t > 1 there

exist integers i;k;s such that

(i) b j+1=b j � αs+t for i� j � i+ k,

(ii) bi+k=bi �∏αr where the product is taken over s+1� r � s+ t, and

(iii) s+ t � q(ε), where ε = 2maxf(b j+1=b j)�1 : i� j � i+ kg.

Then B has property DW.

Proof. Let t > 1. Take i;k; and s to satisfy the above three properties. Let a1 = bi+n(1), where n(1) is the
largest integer > 0 such that bi+n(1)=bi �αs+1. Next take a2 = bi+n(2), where n(2) is the largest integer >
n(1) such that bi+n(2)=bi+n(1) � αs+2. Continue in this manner forming the subsequence fa1;a2; : : : ;atg
of B. Condition (i) assures us that each n(g) exists as long as n(g) � k. But condition (ii) implies that
n(t)� k for, otherwise,

bi+k=bi < bi+n(t)=bi = (bi+n(1)=bi)(bi+n(2)=bi+n(1)) � � �(bi+n(t)=bi+n(t�1))

� ∏
s+1�r�s+t

αr:

Now we show a1;a2; : : : ;at is a DW . For this we need only show that 2a j+1 � a j + a j+2 for each
j = 1;2; : : : ; t�2. This is equivalent to

1
a j+1=a j

+
a j+2

a j+1
� 2:

By the remarks preceding the theorem and condition (iii), it will suffice to show that

αs+ j� ε � bi+n( j)=bi+n( j�1) � αs+ j

for each j = 1;2; : : : ; t (where n0 = 0). This follows easily:

αs+ j�
bi+n( j)

bi+n( j�1)
<

bi+n( j)+1

bi+n( j�1)
� bi+n( j)

bi+n( j�1)

=
bi+n( j)

bi+n( j�1)

 
bi+n( j)+1

bi+n( j)
�1

!

� αs+ j(0:5ε)< ε:

Corollary 4. If bi+1=bi ! 1 (i! ∞), then B has property DW.
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Proof. We show that B satisfies the conditions of the Theorem. Let t > 1. Choose s = 0. Next choose
i large enough so that (i) holds (for all j � i) and t � q(ε), where ε = 2sup j�if(b j+1=b j)�1g. Finally
choose k so that bi+k=bi �∏1�r�t αr.

From Corollary 4 it follows that a sequence of the form an = exp(nε) has DW . Conditions which are
both necessary and sufficient for a set to possess property DW appear to be difficult to state.

5 Remarks

It would be nice to prove either Theorem 2, replacing QP by CP, or Theorem 3, replacing C by CP. (It is,
of course, very unlikely that would prove both of these modified theorems as that would give us Erdős’
Conjecture.)

It is known that the sequence of squares fn2g does not have property AP. Does it have preoprty
QP;CP; or C?

Professors Joel Spencer and Noga Alon have announced that, in Theorem 4, ck3 � f (k) for a suitable
constant c. They have, evidently, also sigificantly improved both bounds for g(ε;k) in Corollary 3: For
suitable constants c and d (depending only on ε)

ck1=2 � g(ε;k)� dk1=2 logk:

Besides descending waves, one can also consider ascending waves. A sequence fa1 < � � � < akg will
be a k�AW if ai+1 � ai � ai+2 � ai+1 for 1 � i � k� 2. There are arbitrarily large finite sets with
no 3�AW and yet every infinite set has property AW , in fact, any infinite set will contain an infinite
subsequence which is an ascending wave. We can show that for each k there is a smallest number
h(k) such that for n � h(k) any set fa1 < � � � < ang of integers has a k�AW or a k�DW . In fact, P.
Erdős and Gy. Szekeres [2] showed that, if f (k; t) denotes the smallest positive integer such that any set
fa1 < a2 < � � �< a f (k;t)g contains either a k�AW or a t�DW , then f (k; t) = f (k�1; t)+ f (k; t�1)�1
(k � 2; t � 2). This immediately gives

f (k; t) =
�

k+ t�4
k�2

�
+1 (k � 2; t � 2);

so that h(k) = f (k;k)� 4k�2=
p

πk.
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