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Abstract

The multiset P = fa1; : : : ;akg is a k-term arithmetic progression modulo n if a1 6� a2 (mod n)

and a2 � a1 � a3 � a2 � �� � � ak � ak�1 (mod n). For k odd and k � 3, we find explicit constnats

εk < 1�1=k such that for any n 6= k and for any subset A of [0;n�1], if jAj > εkn then A contains a

k-term arithmetic progression modulo n. (ε3 = :5 and ε5 is about .77.)

1 Introduction

For each real number ε > 0 and positive integers k and n0, let S(ε;k;n0) denote the following statement.
S(ε;k;n0): For every n� n0, and for every subset A of [0;n�1], if jAj> εn then A contains a k-term

arithmetic progression.
Then Szemerédi’s theorem [2] asserts that for every ε > 0 and k, there exists a least positive integer

n0 = n0(ε;k) such that S(ε;k;n0) holds.
One can ask the following quantitative questions. (Answering them, of course, is something else!)
(a) Given ε > 0 and k, what is n0(ε;k), that is, what is the smallest n0 such that S(ε;k;n0) holds?
(b) Given k and n0, what is the smallest ε such that S(ε;k;n0) holds? (We may denote this smallest

ε by ε(k;n0).)
These questions appear to be simplified if for a given n and a given subset A of [0;n�1] we enlarge

the set of arithmetic progressions under consideration. Thus we say that A contains a k-term arithmetic

progression modulo n if A contains elements a0; : : : ;ak�1 (not necessarily distinct) such that

a j � a0 + jd (mod n); 0� j � k�1;

for some integer d with
d 6� 0(mod n):

We can replace statement S(ε;k;n0) by the corresponding statement M(ε 0;k;n00), for any real number
ε 0 > 0 and positive integers k and n00, as follows.
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M(ε 0;k;n00): For every n � n00, and for every subset A of [0;n� 1], if jAj > ε 0n then A contains a
k-term arithmetic progression modulo n.

One can then ask the following questions.
(a’) Given ε 0 > 0 and k, what is n00(ε;k), the smallest n00 such that M(ε 0;k;n00) holds?
(b’) Given k and n00, what is ε 0(k;n00), the smallest ε 0 such that M(ε 0;k;n00) holds?
In this note we obtain bounds what appear to be the easiest cases of these latter two questions.

Given a small ε > 0 (namely ε � 1
2 ) and arbitrary k, we find a lower bound for n00(ε;k). (Theorem 1

below). Given a small n00 (namely n00 = k+1) and arbitrary odd k, we find an upper bound for ε 0(k;n00).
(Theorem 2 below).

Remark 1. It has been observed in [1] that Szemerédi’s theorem is equivalent to the following statemtn:
For every ε 0 > 0 and k, there exists a least positive integer n00 such that M(ε 0;k;n00) holds.

(In fact,

n00(ε;k)� n0(ε;k)� 1
2

n00(ε=2;k)+
1
2
:

To obtain the second inequality, let 2m � n00(ε=2;k), and let A be any subset of [0;m� 1] such that
jAj > εm = (ε=2)(2m). Then regarding A as a subset of [0;2m� 1] it follows from the choice of 2m

that A contains a k-term arithmetic progression modulo 2m. Since A is a subset of [0;m�1], this k-term
arithmetic progression modulo 2m is in fact a k-term arithmetic progression. Hence n0(ε;k)� m.)

Remark 2. It is trivial that for any k and n00, ε 0(k;n00)� 1�1=k.

(For if A� [0;n�1] and jAj> (1�1=k)n, then the average value of jA\ [i; i+ k�1]j is greater than
1�1=k, hence for some i, A contains i; i+1; : : : ; i+k�1 (modulo n). Note, however, that this argument
fails for ε(k;n0): A = f0;1;3g � [0;3] and jAj > (1� 1=3) � 4, but A contains no 3-term arithmetic
progression.)

2 Results

From now on, we abbreviate “k-term arithmetic progression" to “k-progression".

Theorem 1. For s� 2;k � 3,

n00(1=s;k)>
p

2sk=2�2s+1: (1)

Proof. Fix s� 2;k� 3, and consider the (m+1)-element subsets of [0;ms]. Note that m+1> (1=s)(ms+

1), so that if one of these subsets contains no k-progression modulo ms+1, then n00(1=s;k)> ms+1.
Given a fixed k-progression P (modulo ms+ 1) in [0;ms], the number of (m+ 1)-element subsets

of [0;ms] which contain P is at most
�ms+1�k

m+1�k

�
. The total number of distinct k-progressions P (modulo

ms+1) in [0;ms] is at most (ms+1)(ms)=2. Therefore

�
ms+1� k
m+1� k

�
(ms+1)(ms)=2 <

�
ms+1
m+1

�
(2)

implies
n00(1=s;k)> ms+1: (3)
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When m+1� k, (2) is equivalent to

m(m+1)< 2 �
�

ms�1
m�1

��
ms�2
m�2

�
�
�

ms� k+2
m� k+2

�
; (4)

and each factor on the right hand side of (4) is greater than s. Therefore when m+ 1 � k, (2) holnds
provided m(m+1)� 2 � sk�2, which in turn holds provided (m+1)2 � 2 � sk�2, or

m�
p

2sk=2�1�1: (5)

Now when k�p2sk=2�1, we can find an integer m such that k�m+1�p2sk=2�1 and m>
p

2sk=2�1�2,
which gives (1).

Only a small number of pairs (s;k) have k >
p

2sk=2�1 (namely (s;k) = (2;3), (2;4), (2;5), (2;6),
(3;3), (4;3)), and these can be checked separately, giving (1) in all cases.

Theorem 2. Define the numbers εk, for odd k � 3, as follows. Let ε3 = 1=2. For k = 2m+1, m� 2, let

εk = 1� k+1
k+2

 r
m2 +

k+2
k+1

�m

!
: (6)

Then εk < 1� 1=k, and for every n 6= k and every subset A of [0;n� 1], if jAj > εkn then A contains a

k-progression modulo n.

Lemma 1. In proving Theorem 2, we may assume that n > k.

Proof of Lemma 1. For k = 3, the assertion of the lemma is obviously true. For k > 3, one can check that
εk > 1�1=(k�1). From this it follows that if n < k and A is any subset of [0;n�1] such that jAj> εkn,
then A = [0;n�1] and hence A contains a k-progression modulo n.

Lemma 2. In proving Theorem 2, we may assume that n is prime.

Proof of Lemma 2. Assume that if p is prime, A � [0; p�1], jAj> εk p, then A contains a k-progression
modulo p. Now let n be arbitrary, let A� [0;n�1], jAj> εkn, and let p be a prime divisor of n. Identify
[0;n� 1] with the cyclic group Zn. Then Zn contains a copy H of Zp, and for some coset a+H of H,
jA\ (a+H)j> εkH, or

j(A�a)\Hj> εk p: (7)

Therefore A�a contains a k-progression as a subset of H; since H is a subgroup of Zn, this k-progression
is a k-progression as a subset of Zn.

Remark. The same argument shows that in Theorem 2, Zn can be replaced by an arbitrary abelian group,
except for Zp��� ��Zp when k = p =prime. In particular, Theorem 2 is true even for n = k, provided k

is not prime.

Proof of Theorem 2. Case 1. The case k = 3. Let p be prime, p > 3, A � [0; p� 1], jAj = α p, and as-
sume that A contains no 3-progression modulo p. We need to show that α � 1=2.
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For each pair x;x + y (y 6= 0) of elements of A, the (distinct) elements w1 = x� y, w2 = x + 2y

are excluded from A, since A contains no 3-progression modulo p. (All arithmetic operations here are
modulo p.)

Also, given distinct elements w1;w2 in [0; p�1], there are unique x;y (y 6= 0) in [0; p�1] such that
x� y = w1 and x+2y = w2.

It easily follows that each excluded pair fw1;w2g is excluded only once, so that the
�

α p
2

�
pairs of

elements of A exclude
�

α p
2

�
distinct pairs fw1;w2g from A. The union of these

�
α p
2

�
distinct pairs of

elements has at least α p elements.
Thus α p = jAj � p�α p, and α � 1=2, as required.

Case 2. The case k > 3. From now on, for convenience, we abbreviate “k-progression modulo p" to “k-
progression".

Let k = 2m+1, m � 2. Let p be prime, p > k, A � [0; p�1], jAj= α p, and assume that A contains
no k-progression.

We need to show that α � εk. (One can check directly that εk < 1�1=k. ε5 is about 0.77.)
The argument proceeds essentially as in the case k = 3:
Each (k� 1)-progression contained in A eliminates a pair fw1;w2g of elements from A, and each

eliminated pair fw1;w2g is eliminated exactly once.
Let t be the number of (k� 1)-progressions contained in A. Then the union of the t excluded pairs

fw1;w2g has at least w elements, where w is the smallest integer such that
�w

2

� � t. Then w >
p

2t, so
that α p = jAj< p�p2t, or

(1�α)2 p2 > 2t: (8)

Now we estimate t from below. The set [0; p�1]�A contains (1�α)p elements, and each of these
belong to exactly m(p� 1) (k� 1)-progressions. Thus [0; p� 1]�A meets at most (1�α)pm(p� 1)
(k� 1)-progressions. Since the total number of (k� 1)-progressions contained in [0; p� 1] is exactly
p(p�1)=2, it follows that

t � p(p�1)=2� p(p�1)(1�α)m;

or
2t � p(p�1)(1� (1�α)2m): (9)

Combining (9) and (8) gives
(1�α)2

1� (1�α)2m
> 1�1=p: (10)

Since p� k+2 = 2m+3, this gives

(1�α)2

1� (1�α)2m
> 1� 1

2m+3
: (11)

Using α � 1, it follows from (11) that α � εk as required.
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(When k is even, all of the above remains valid except for εk < 1�1=k. Hence, according to Remark 2
above, the application of this method for even k gives no result. Perhaps some modified version of this
method will work for even k.)

References

[1] T.C. Brown and J.P. Buhler, Lines imply spaces in density Ramsey theory, J. Combin. Theory Ser. A
36 (1984), 214–220.

[2] E. Szemerédi, On sets of integers containing no k elements in an arithmetic progression, Acta. Arith.
27 (1975), 199–245, Collection of articles in memory of Jurii Vladimirovic Linnik.

5


	Introduction
	Results

