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1 Introduction

Let s(n) denote the sum of the base 10 digits of the nonnegative integer n, and let logx denote the base
10 logarithm of x. R. E. Kennedy and C. Cooper have shown [1] that for any positive integer k,

1
x ∑

n�x
s(n)k =

�
9
2

�k

logk x+O(logk� 1
3 x);

and they conjectured that for any positive integer k,

1
x ∑

n�x
s(n)k =

�
9
2

�k

logk x+O(logk�1 x):

Recently [2] the same authors have shown, providing some evidence for the truth of this conjecture,
that for each fixed positive integer k,

1
10n

10n�1

∑
i=0

s(i)k =

�
9
2

�k

nk +O(nk�1):

In this note, we extend the result just mentioned. When k is a fixed positive integer, we show that for
each m it is true that

1
x ∑

n�x
s(n)k =

�
9
2

�k

logk x+O(logk�1 x);

provided that x is restricted to the set of those positive integers having at most m nonzero digits in their
base 10 representations. (Thus, the Kennedy & Cooper result is exactly the case m = 1.) We use the
Kennedy & Cooper result in the course of our proof.

We state our result in the following form.

Proposition. Let m� 1 and k � 1 be fixed integers. Then there is a constant A = A(k;m) such that if x
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is a positive integer with at most m nonzero digits in its base 10 representation,

�����1x
x�1

∑
i=0

s(i)k
�

�
9
2

�k

(logx)k

�����< A(logx)k�1
:

2 Remarks and Lemmas

Remark 1. It is easy to check that if m;k are fixed positive integers and

�����1x
x�1

∑
i=0

s(i)k
�

�
9
2

�k

[logx]k
�����< c[logx]k�1

;

then �����1x
x�1

∑
i=0

s(i)k
�

�
9
2

�k

(logx)k

�����< d(logx)k�1
;

where [�] denotes the greatest integer function and d is a constant that depends only on c and k.

To see this, suppose 10n � x� 10n+1, so that n = [logx]. Let logx = n+α , where 0� α < 1. Then

�����1x
x�1

∑
i=0

s(i)k
�

�
9
2

�k

(n+α)k

�����
<

�����1x
x�1

∑
i=0

s(i)k
�

�
9
2

�k

nk

�����+
�����
�

9
2

�k

nk
�

�
9
2

�k

(n+α)k

�����
=

�����1x
x�1

∑
i=0

s(i)k
�

�
9
2

�k

nk

�����+
�

9
2

�k�
kαnk�1 +

�
k
2

�
α

2nk�2 + � � �+

�
k
k

�
α

k
�

< cnk�1 + c0nk�1 = dnk�1
� d(n+α)k�1

:

Remark 2. In view of Remark 1, to prove the Proposition above, it is sufficient (and convenient) to prove

the following statement, which will be done by induction on m.

For fixed positive integers m, k, there is an A = A(k;m) such that if 10n � x < 10n+1 and x has at
most m nonzero digits in its base 10 representation, then

�����1x
x�1

∑
i=0

s(i)k
�

�
9
2

�k

nk

�����< Ank�1
:

In the following three lemmas, k;n; p;y and t all denote integers.

Lemma 1. For each k � 1, there is an A(k) such that

n �10p+1

10n +10p+1

�
1�
� p

n

�k
�

< A(k) for all n; p with 1� p� n:
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Proof. Let s = n� p�1. Then �1� s� n�2 and

n �10p+1

10n +10p+1

�
1�
� p

n

�k
�
=

n
10s +1

 
1�
�

1�
s+1

n

�k
!

=
n

10s +1

�
k �

s+1
n

�

�
k
2

�
(s+1)2

n2 +

�
k
2

�
(s+1)3

n3 ��� �� (�1)k
�

k
k

�
(s+1)k

nk

�

=
k � (s+1)
10s +1

+o(1)< A(k):

Note that for i� 2,

n
10s +1

(s+1)i

ni �

�
max

�1�s<∞

(s+1)i

10s +1

�
�

1
ni�1 ! 0 as n! ∞:

Lemma 2. Fix k � 1. Let A(k) be as in Lemma 1. Then for any y in the interval 10p � y� 10p+1 � 10n

and any t � 1,

����� t �10n

t �10n + y

�
9
2

�k

nk +
y

t �10n + y

�
9
2

�k

pk
�

�
9
2

�k

nk

�����<
�

9
2

�k

A(k)nk�1
:

Proof.

���� t �10n

t �10n + y
nk +

y
t �10n + y

pk
�nk

����= nk y
t �10n + y

�
1�
� p

n

�k
�

< nk 10p+1

t �10n +10p+1 �

�
1�
� p

n

�k
�

� nk�1 n �10p+1

10n +10p+1

�
1�
� p

n

�k
�

< A(k) �nk�1
;

where the last inequality is given by Lemma 1.

Lemma 3. Let t � 1 and k � 1 be fixed. Then

1
t �10n

t�10n�1

∑
i=0

s(i)k =

�
9
2

�k

nk +O(nk�1):

In other words, there is B(t;k) with

����� 1
t �10n

t�10n�1

∑
i=0

s(i)k
�

�
9
2

�k

nk

�����< B(t;k)nk�1
:

To prove the Proposition, we will only need this lemma for t = 1;2; : : : ;9.

Proof. We use induction on t. For t = 1, this is the result of Kennedy & Cooper mentioned above.
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Now fix t � 1 and assume the result for this t. Then, using the fact that s(t � 10n + i) = s(t) + s(i),
0� i� 10n�1,

����� 1
(t +1) �10n

t�10n�1

∑
i=0

s(i)k
�

�
9
2

�k

nk

������
����� t
t +1

 
1

t �10n

t�10n�1

∑
i=0

s(i)k
�

�
9
2

�k
!�����

+

����� 1
t +1

 
1
�10n

t�10n�1

∑
i=0

s(i)k
�

�
9
2

�k
!�����

+
1

t +1
�

1
10n

t�10n�1

∑
i=0

(c1s(i)k�1 + c2s(i)k�2 + � � �+ ck)

<
t

t +1
B(t;k)nk�1 +

1
t +1

B(1;k)nk�1 +Cnk�1

< B(t +1;k)nk�1
:

Note that we used the result of Kennedy & Cooper a second time. Here c1; : : : ;ck, C are constants
that depend only on k and t.

3 Proof of the Proposition

According to Remark 2, we need to show that, for each m� 1 and k� 1, there is a constant A(k;m) such
that if 10n � x < 10n+1 and x has at most m nonzero digits in its base 10 representation, then

�����1x
x�1

∑
i=0

s(i)k
�

�
9
2

�k
�����< A(k;m)nk�1

:

If m = 1, this follows from Lemma 3 (for all k), since then x = t �10n, 1� t � 9.
Now assume the result for a given m� 1, and let x have m+1 nonzero digits, say,

10n
� x < 10n+1

;x = t �10n + y;1� t � 9;10p
� y < 10p+1

� 10n
;

where y has m nonzero digits. Then, using s(t �10n + i) = t + s(i),

�����1x
x�1

∑
i=0

s(i)k
�

�
9
2

�k
������
����� t �10n

t �10n + y

 
1

t �10n

t�10n�1

∑
i=0

s(i)k
�

�
9
2

�k
!�����

+

����� y
t �10n + y

 
1
y

y�1

∑
i=0

s(i)k
�

�
9
2

�k
!�����

+
y

t �10n + y
�

1
y

y�1

∑
i=0

(c1s(i)k�1 + c2s(i)k�2 + � � �+ ck)

< A(k;1)nk�1 +A(k;m)pk�1 +Dpk�1

< A(k;m+1)nk�1
:
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Here c1; : : : ;ck;D are constants that depend on k and t, but since 1 � t � 9, they in fact depend only on
k. For the second equality, we used Lemma 3 as well as the induction hypothesis.
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