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Abstract

We discuss integer sequences fTng such that fTng satisfies a second-order homogeneous linear re-

currence relation with constant integer coefficients, and fT 2
n g satisfies a second-order linear recurrence

relation with constant integer coefficients. We also prove some related results.

1 Introduction

Let us call a sequence fTng an “mth-order sequence” if fTngn�0 satisfies an mth order linear recurrence
relation with constant integer coefficients. It is well known [2, 3] that if fTngn�0 is a second-order
sequence then the sequence of squares fT 2

n gn�0 is a third-order sequence. (It is also easy to show this
directly.) It would be of interest to be able to describe all second-order sequences fTngn�0 such that
fT 2

n gn�0 is a second-order sequence.
In this note we do this for certain homogeneous sequences fTngn�0. That is, we assume that fTngn�0

satisfies a recurrence of the form T0 = a, T1 = b, Tn+1 = cTn� dTn�1, n � 1, where a, b, c 6= 0, d 6= 0
are integers, ab 6= 0, and x2� cx+ d = 0 has distinct roots. It then turns out that fT 2

n gn�0 satisfies a
second-order linear recurrence (which we describe in Theorem 6) if and only if d = 1.

As an illustration of this, consider the sequence 1;2;7;26;97;362; : : :, which satisfies the second-
order recurrence B0 = 1, B1 = 2, Bn+1 = 4Bn�Bn�1, n� 1. The sequence of squares 12

;22
;72

;262
;972

;3622
; : : :

satisfies the second-order recurrence S0 = 1, S1 = 4, Sn+1 = 14Sn�Sn�1�6, n� 1.
We also consider second-order sequences fTngn�0 such that a slight perturbation of the sequence of

squares fT 2
n gn�0 is a second-order sequence. For example, the sequence 1;1;3;7;17;41;99; : : : satisfies

the second-order recurrence B0 = B1 = 1, Bn+1 = 2Bn +Bn�1, n � 1, and the “perturbed” sequence of
squares 12, 12 +1, 32, 72 +1, 172, 412 +1, 992, . . . , satisfies the second-order recurrence S0 = 1, S1 = 2,
Sn+1 = 6Sn�Sn�1�2, n� 1.

We begin with some special cases using elementary techniques. Then, in the last section, we handle
the general case using an old result of E. S. Selmer [2], which states that if Tn+1 = ATn +BTn�1, n � 1,
and x2�Ax�B = (x�α)(x�β ), α 6= β , then T 2

n+1 =CT 2
n +DT 2

n�1 +ET 2
n�2, n� 2, where x2�Cx2�

Dx�E = (x�α2)(x�β 2)(x�αβ ).
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2 Some special cases

We begin with some special cases, for which we will use the following Lemma.

Lemma. Let p � 4 be any integer, let δ =
q

p
4 +

q
p
4 �1, and let Sn =

�
δ n + 1

δ n

�2
, n � 0. Then these

numbers Sn satisfy the following identities.

(a) For all 0� m� n,

(Sn�2)(Sm�2) = Sn+m +Sn�m�4:

(In particular, (Sn�2)2 = S2n, so S2n is always a perfect square.)

(b) For all 0� m� n, m� n(mod 2),

SnSm = (S(n+m)=2 +S(n�m)=2�4)2
:

(In particular, Sn+kSn�k = (Sn +Sk�4)2 and pS2n+1 = S1S2n+1 = (Sn +Sn+1�4)2, so that S2n+1

is always a perfect square provided p is a perfect square.)

(c) For all 0� m� n, m� n(mod 2),

(Sn�4)(Sm�4) = S(n+m)=2 +S(n�m)=2)
2
:

(In particular, (p�4)(S2n+2�4) = (S1�4)(S2n+1�4) = (Sn+1�Sn)
2, so that S2n+1�4 is always

a perfect square provided p�4 is a perfect square.)

(d) Sn+1 = (p�2)Sn�Sn�1�2(p�4), n� 1.

Proof. We prove part (d) in detail. The proofs of parts (a), (b), and (c) are very similar, and are omitted.
Note that 1

δ
=
q

p
4 �

q
p
4 �1, so that

�
δ + 1

δ

�2
= p. Then

pSn+1 =

�
δ +

1
δ

�2

Sn+1 =

��
δ +

1
δ

��
δ

n+1 +
1

δ n+1

��2

=

��
δ

n+2 +
1

δ n+2

�
+

�
δ

n +
1

δ n

��2

= Sn+2 +Sn +2
�

δ
2n+2 +

1
δ 2n+2 +δ

2 +
1

δ 2

�

= Sn+2 +Sn +2

"�
δ

n+1 +
1

δ n+1

�2

�2+
�

δ +
1
δ

�2

�2

#
= Sn+2 +Sn +2Sn+1 +2(p�4);

that is, Sn+2 = (p�2)Sn+1�Sn�2(p�4), n� 0.

3 Second order sequences fTngn�0 whose squares fT 2
n gn�0 are also

second order sequences. Special Cases.

Theorem 1. Let d � 3 be an integer. Define the sequence fBngn�0 by B0 = 2, B1 = d, Bn+2 = dBn+1�
Bn, n � 0. Then the sequence of squares fB2

ngn�0 satisfies the second-order recurrence B2
n+2 = (d2�

2)B2
n+1�B2

n�2(d2�4), n� 0.
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Proof. Solving the recurrence B0 = 2, B1 = d, Bn+2 = dBn+1�Bn, n � 0 in the usual way gives Bn =

δ n + 1
δ n , n � 0, where δ =

q
d2

4 +
q

d2

4 �1, 1
δ
=
q

d2

4 �
q

d2

4 �1. Let us now simplify the notation

by setting Sn = B2
n, n � 0. Then Sn =

�
δ + 1

δ

�2
, n � 0, and by part (d) of the Lemma (with p = d2),

Sn+2 = (d2�2)Sn+1�Sn�2(d2�4), n� 0.

4 Perturbed sequences

Here we give a second-order sequence whose squares, when slightly perturbed, form a second-order
sequence.

Theorem 2. Let d� 1 be an integer. Define the sequence fCngn�0 by C0 = 2, C1 = d, Cn+2 = dCn+1+Cn,

n� 0. Let S2n =C2
2n, S2n+1 =C2

2n+1 +4, n� 0. Then Sn+2 = (d2 +2)Sn+1�Sn�2d2, n� 0.

Proof. Solving the recurrence C0 = 2, C1 = d, Cn+1 = dCn+1 +Cn, n � 0 in the usual way gives Cn =

δ n+
�
�1
δ

�n
, where δ =

q
d2

4 +1+
q

d2

4 , 1
δ
=
q

d2

4 +1�
q

d2

4 . Then S2n =C2
2n =

�
δ 2n + 1

δ 2n

�2
, S2n+1 =

C2
2n+1 +4 =

�
δ 2n+1 + 1

δ 2n+1

�2
, n� 0.

Since
�
δ + 1

δ

�2
= d2 +4, we obtain (d2 +4)Sn+1 =

h�
δ + 1

δ

��
δ n+1 + 1

δ n+1

�i2
, and the calculations

used in the proof of part (d) of the Lemma now give Sn+2 = (d2 +2)Sn+1�Sn�2d2, n� 0.

Corollary 1. Let S2n = L2
2n, S2n+1 = L2

2n+1 +4, n� 0, where fLng is the Lucas sequence. Then Sn+2 =

3Sn+1�Sn�2, n� 0.

Proof. This is the case d = 1 of Theorem 2.

Corollary 2. Let T2n = F2
2n +

4
5 , T2n+1 = F2

2n+1, n � 0, where fFng is the Fibonacci sequence. Then

Tn+2 = 3Tn+1�Tn�2, n� 0.

Proof. This follows from Corollary 1 and the identity [1, pp. 56] 5F2
n = L2

n�4(�1)n.

5 Additional special cases

If we now write δ =
p

s�ps�1, Sn = 1
4

�
δ n + 1

δ n

�2
, n � 0, we obtain, just as in the Lemma, S0 = 1,

S1 = s, Sn+2 = 4(s�2)Sn+1�Sn�2(s�1), n� 0.
The following two results can now be proved in essentially the same way as Theorems 1 and 2.

Theorem 3. Let d � 2 be an integer. Define the sequence fBngn�0 by B0 = 1, B1 = d, Bn+2 = 2dBn+1�
Bn, n� 0. Then the sequence of squares fB2

ngn�0 satisfies the second-order recurrence

B2
n+2 = (4d2�2)Bn+1�Bn�2d2

; n� 0:

Theorem 4. Let d � 1 be an integer. Define the sequence fCngn�0 by C0 = 1, C1 = d, Cn+2 = 2dCn+1 +

Cn, n� 0. Let S2n =C2
2n, S2n+1 =C2

2n+1, n� 0. Then Sn+2 = (4d2 +2)Sn+1�Sn�2d2, n� 0.
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6 The more general homogeneous case

Theorem 5. Let a;b;c 6= 0, d 6= 0 be integers, with ab 6= 0 and c2 6= 4d. Let B0 = a, B1 = b, Bn+1 =

cBn�dBn�1, n� 1. Then B2
n+1 = (c2�2d)B2

n�d2B2
n�1 +2(b2�a2d�abc)dn, n� 1.

Proof. Let α;β be the roots of x2 � cx + d = 0. Then α;β = 1
2 (c�

p
c2�4d), α 6= �β , α2

;β 2 =
1
2 (c

2�2d� c
p

c2�4d), αβ = d. Also α2 6= β 2 6= d, since c 6= 0, d 6= 0, c2 6= 4d.
According to the result of Selmer stated in the Introduction, there are constants A, B, C such that

B2
n = Aα2n +Bβ 2n +Cdn, n� 0.

Solving the system
a2 = B2

0 = A+B+C

b2 = B2
1 = Aα2 +Bβ 2 +Cd

(bc�ad)2 = B2
2 = Aα4 +Bβ 4 +Cd2

for C gives C = 2(b2+a2d�abc)
4d�c2 .

Using (c2� 2d)α2n� d2α2n�2 = α2n+2 and (c2� 2d)β 2n� d2β 2n�2 = β 2n+2 gives (c2� 2d)B2
n�

d2B2
n�1 + edn = Aα2n+2 + Bβ 2n+2 +C[(c2 � 2d)dn � dn+1] + edn. Now choosing e so that C[(c2 �

2d)dn�dn+1]+edn =Cdn+1 (namely e =C(4d�c2) = 2(b2 +a2d�abc)), finally gives (c2�2d)B2
n�

d2B2
n�1 + edn = Aα2n+2 +Bβ 2n+2 +Cdn+1 = B2

n+1, which completes the proof.

Remark. The result of Theorem 5 appears in [4].

Applying Theorem 5 to the question raised in the Introduction, we immediately get the following
result.

Theorem 6. Let a;b;c 6= 0, d 6= 0 be integers, with ab 6= 0 and c2 6= 4d. Let B0 = a, B1 = b, Bn+1 = cBn�
dBn�1, n � 1. Then the sequence of squares fB2

ngn�0 satisfies a second-order linear recurrence (with

constant coefficients) if and only if d = 1, in which case B2
n+1 = (c2� 2)B2

n�B2
n�1 + 2(b2 + a2� abc),

n� 1.

Our final result is the general version of Theorem 2, in which we consider a perturbation of the
sequence of squares.

Theorem 7. Let a;b;c 6= 0, d 6= 0 be integers, with ab 6= 0 and c2 6= 4d, such that e = 4(a2+abc�b2)

c2+4 is

an integer. Define the sequence fBngn�0 by B0 = a, B1 = b, Bn+1 = cBn +Bn�1, n � 1. Let S2n = B2
2n,

S2n+1 =B2
2n+1+e, n� 0. Then fSngn�0 satisfies the second-order recurrence Sn+1 = (c2+2)Sn�Sn�1+

2e+2(b2�a2�abc), n� 1.

Proof. This is a direct application of Theorem 5 with d =�1, according to which B2
n+1 = (c2 +2)B2

n�
B2

n�1 +2(b2�a�abc)(�1)n.
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