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Abstract

For positive integers s and k1,k2, . . . ,ks, the van der Waerden number w(k1,k2, . . . ,ks;s) is the

minimum integer n such that for every s-coloring of set {1,2, . . . ,n}, with colors 1,2, . . . ,s, there is a

ki-term arithmetic progression of color i for some i. We give an asymptotic lower bound for w(k,m;2)

for fixed m. We include a table of values of w(k,3;2) that are very close to this lower bound for m = 3.

We also give a lower bound for w(k,k, . . . ,k;s) that slightly improves previously-known bounds. Upper

bounds for w(k,4;2) and w(4,4, . . . ,4;s) are also provided.

1 Introduction

Two fundamental theorems in combinatorics are van der Waerden’s theorem [18] and Ramsey’s theorem
[16]. The theorem of van der Waerden says that for all positive integers s and k1,k2, . . . ,ks, there exists
a least positive integer n = w(k1,k2, . . . ,ks;s) such that whenever [1,n] = {1,2, . . . ,n} is s-colored (i.e.,
partitioned into s sets), there is a ki-term arithmetic progression with color i for some i, 1≤ i≤ s.

Similarly, Ramsey’s theorem has an associated “threshold” function R(k1,k2, . . . ,ks;s) (which we
will not define here). The order of magnitude of R(k,3;2) is known to be k2

logk [11], while the best
known upper bound on R(k,m;2) is fairly close to the best known lower bound. In contrast, the order of
magnitude of w(k,3;2) is not known, and the best known lower and upper bounds on w(k,k;2) are

(k−1)2(k−1) ≤ w(k,k;2) < 22222(k+9)

,

the lower bound known only when k−1 is prime. The lower bound is due to Berlekamp [1] and the upper
bound is a celebrated result of Gowers [6], which answered a long-standing question of Ron Graham.
Graham currently offers 1000 USD for a proof or disproof of w(k,k;2) < 2k2

[2]. Several other open
problems are stated in [14].

Recently, there have been some further breakthroughs in the study of the van der Waerden function
w(k,m;2). One was the amazing calculation that w(6,6;2) = 1132 by Kouril [12], extending the list
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of previously known values w(3,3;2) = 9, w(4,4;2) = 35, and w(5,5;2) = 178. A list of other known
exact values of w(k,m;2) appears in [15]. Improved lower bounds on several specific values of w(k,k;s)
are given in [3] and [10].

In another direction, Graham [7] gives an elegant proof that if one defines w1(k,3) to be the least
n such that every 2-coloring of [1,n] gives either k consecutive integers in the first color or a 3-term
arithmetic progression in the second color, then

kc logk < w1(k,3) < kdk2
,

for suitable constants c,d > 0. This immediately gives w(k,3;2 < kdk2
since we trivially have w(k,3;2)≤

w1(k,3). In view of Graham’s bounds on w1(k,3), it would be desirable to obtain improved bounds on
w(k,3;2). Of particular interest is the question of whether or not there is a non-polynomial lower bound
for w(k,3;2).

In this note we give a lower bound of w(k,3;2) > k(2−o(1)). Although this may seem weak, we
do know that w(k,3;2) < k2 for 5 ≤ k ≤ 16 (i.e., for all known values of w(k,3;2) with k ≥ 5; see
Table 2). More generally, we give a lower bound on w(k,m;2) for arbitrary fixed m. We also present a
lower bound for the classical van der Waerden numbers w(k,k, . . . ,k;s) that is a slight improvement over
previously published bounds. In addition, we present an upper bound for w(k,4;2) and an upper bound
for w(4,4, . . . ,4;s).

2 Upper and lower bounds for certain van der Waerden functions

We shall need several definitions, which we collect here.
For positive integers k and n,

rk(n) = max
S⊆[1,n]

{|S| : S contains no k-term arithmetic progression }.

For positive integers k and m, denote by χk(m) the minimum number of colors required to color [1,m] so
that there is no monochromatic k-term arithmetic progression.

The function w1(k,3) has been defined in Section 1. Similarly, we define w1(k,4) to be the least n

such that every 2-coloring of [1,n] has either k consecutive integers in the first color or a 4-term arithmetic
progression in the second color.

We begin with an upper bound for w1(k,4). The proof is essentially the same as the proof given by
Graham [7] of an upper bound for w1(k,3). For completeness, we include the proof here. We will make
use of a recent result of Green and Tao [9], who showed that for some constant c > 0,

r4(n) < ne−c
√

log logn (1)

for all n≥ 3.

Proposition 1. There exists a constant c > 0 such that w1(k,4) < ekc logk
for all k ≥ 2.

Proof. Suppose we have a 2-coloring of [1,n] (assume n ≥ 4) with no 4-term arithmetic progression of
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the second color and no k consecutive integers of the first color. Let t1 < t2 < · · · < tm be the integers
of the second color. Hence, m < r4(n). Let us define t0 = 0 and tm+1 = n. Then there must be some i,
1≤ i≤ m, such that

ti+1− ti >
n

2r4(n)
.

(Otherwise, using r4(n)≥ 3, we would have n = ∑
m
i=0(ti+1− ti)≤ n(m+1)

2r4(n) ≤
n(r4(n)+1)

2r4(n) ≤ n
2 + n

6 .)
Using (1), we now have an i with

ti+1− ti >
n

2r4(n)
>

1
2

ec
√

log logn.

If n ≥ ekd logk
, d = c−2, then 1

2 ec
√

log logn ≥ k and we have k consecutive integers of the first color, a
contradiction. Hence, n < ekd logk

and we are done.

Clearly w(k,4;2)≤ w1(k,4). Consequently, we have the following result.

Corollary 2. There exists a constant d > 0 such that w(k,4;2) < ekd logk
for all k ≥ 2.

Using Green and Tao’s result, it is not difficult to obtain an upper bound for w(4,4, . . . ,4;s).

Proposition 3. There exists a constant d > 0 such that w(4,4, . . . ,4;s) < esd logs
for all s≥ 2.

Proof. Consider a χ4(m)-coloring of [1,m] for which there is no monochromatic 4-term arithmetic pro-
gression. Some color must be used at least m

χ4(m) times, and hence m
χ4(m) ≤ r4(m) so that m

r4(m) ≤ χ4(m).

Let c > 0 be such that (1) holds for all n≥ 3, and let m = esd logs
, where d = c−2. Then χ4(m)≥ m

r4(m) >

ec
√

log logm = s. This means that every s-coloring of [1,m] has a monochromatic 4-term arithmetic pro-
gression. Since m = esd logs

, the proof is complete.

It is interesting that the bounds in Corollary 2 and Proposition 3 have the same form.
The following theorem gives a lower bound on w(k,k, . . . ,k;s). It is deduced without too much

difficulty from the Symmetric Hypergraph Theorem as it appears in [8], combined with an old result
of Rankin [17]. To the best of our knowledge it has not appeared in print before, even though it is
better, for large s, than the standard lower bound csk

k (1 + o(1)) (see [8]), as well as the lower bounds
sk+1−

√
c(k +1) log(k +1) and ksk

e(k+1)2 due to Erdős and Rado [4], and Everts [5], respectively. We give
the proof in some detail. The proof makes use of the following facts:

χk(n) <
2n logn
rk(n)

(1+o(1)), (2)

which appears in [8] as a consequence of the Symmetric Hypergraph Theorem; and

rk(n) > ne−c(logn)
1

blog2 kc+1
, (3)

which, for some constant c > 0, holds for all n≥ 3 (this appears in [17]).

Theorem 4. Let k≥ 3 be fixed, and let z = blog2 kc. There exists a constant d > 0 such that w(k,k, . . . ,k;s)>

sd(logs)z
for all sufficiently large s.
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Proof. We make use of the observation that for positive integers s and m, if s≥ χk(m), then w(k,k, . . . ,k;s)>

m, which is clear from the definitions. For large enough m, (2) gives

χk(m) <
2m logm

rk(m)

(
1+

1
2

)
=

3m logm
rk(m)

. (4)

Now let d =
( 1

2c

)z+1
, where c is from (3), and let m = sd(logs)z

, where s is large enough so that (4)

holds. By (3), noting that logm = d(logs)z+1 =
(

logs
2c

)z+1
, we have

m
rk(m)

< ec(logm)
1

z+1 = ec· logs
2c =

√
s.

Therefore,
3m logm

rk(m)
< 3d

√
s(logs)z+1 < s

for sufficiently large s. Thus, for sufficiently large s,

χk(m) <
3m logm

rk(m)
< s.

According to the observation at the beginning of the proof, this implies that w(k,k, . . . ,k;s) > m =
sd(logs)z

, as required.

We now give a lower bound on w(k,m;2). We make use of the Lovász Local Lemma (see [8] for a
proof), which will be implicitly stated in the proof.

Theorem 5. Let m≥ 3 be fixed. Then for all sufficiently large k,

w(k,m;2) > km−1− 1
loglogk .

Proof. Given m, choose k > m large enough so that

k
1

2m log logk >

(
m− 1

2loglogk

)
logk (5)

and
6 <

logk
log logk

. (6)

Next, let n =
⌊

km−1− 1
loglogk

⌋
. To prove the theorem, we will show that there exists a (red, blue)-

coloring of [1,n] for which there is no red k-term arithmetic progression and no blue m-term arithmetic
progression.

For the purpose of using the Lovász Local Lemma, randomly color [1,n] in the following way. For
each i ∈ [1,n], color i red with probability p = 1− kα−1 where

α :=
1

2m log logk
,

and color it blue with probability 1− p.
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Let P be any k-term arithmetic progression. Then, since 1+ x≤ ex, the probability that P is red is

pk = (1− kα−1)k ≤
(

e−kα−1
)k

= e−kα

.

Hence, applying (5), we have

pk <

(
1
e

)(m− 1
2loglogk

)
logk

=
1

km− 1
2loglogk

.

Also, for any m-term arithmetic progression Q, the probability that Q is blue is

(1− p)m = (kα−1)m =
1

km− 1
2loglogk

.

Now let P1,P2, . . . ,Pt be all of the arithmetic progressions in [1,n] with length k or m. So that we may
apply the Lovász Local Lemma, we form the “dependency graph” G by setting V (G)= {P1,P2, . . . ,Pt}
and E(G) = {{Pi,P j} : i = j,Pi ∩P j 6= ∅}. For each Pi ∈ V (G), let d(Pi) denote the degree of
the vertex Pi in G, i.e., |{e ∈ E(G) : Pi ∈ e}|. We now estimate d(Pi) from above. Let x ∈ [1,n]. The
number of k-term arithmetic progressions P in [1,n] that contain x is bounded above by k · n

k−1 , since
there are k positions that x may occupy in P and since the gap size of P cannot exceed n

k−1 . Similarly,
the number of m-term arithmetic progressions Q in [1,n] that contain x is bounded above by m · n

m−1 .
Let Pi be any k-term arithmetic progression contained in [1,n]. The total number of k-term arith-

metic progressions P and m-term arithmetic progressions Q in [1,n] that may have nonempty intersec-
tion with Pi is bounded above by

k
(

k · n
k−1

+m · n
m−1

)
< kn

(
2+

2
m−1

)
, (7)

since k > m. Thus, d(Pi) < kn(2 + 2
m−1 ) when |Pi| = k. Likewise, d(Pi) < mn(2 + 2

m−1 ) when
|Pi|= m. Thus, for all vertices Pi of G, we have d(Pi) < kn(2+ 2

m−1 ).
To finish setting up the hypotheses for the Lov’asz Local Lemma, we let Xi denote the event that the

arithmetic progression Pi is red if |Pi| = k, or blue if |Pi| = m, and we let d = max1≤≤t d(Pi). We
have seen above that for all i, 1≤ i≤ t, the probability that Xi occurs is at most

q :=
1

km− 1
2loglogk

,

while from (7) we have d < 2kn(1+ 1
m−1 ).

We are now ready to apply the Lovász Local Lemma, which says that in these circumstances, if
the condition eq(d + 1) < 1 is satisfied, then there is a (red, blue)-coloring of [1,n] such that no event
Xi occurs, i.e., such that there is no red k-term arithmetic progression and no blue m-term arithmetic
progression. This will imply

w(k,m;2) > n = km−1− 1
loglogk ,

as desired. Thus, the proof will be complete when we verify that eq(d + 1) < 1. Using m ≥ 3, we have
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Table 1: Small values of w(k,3) and w1(k,3)
k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
w(k,3;2) 6 9 18 22 32 46 58 77 97 114 135 160 186 218 238
w1(k,3) 9 23 34 73 113 193 ? ? ? ? ? ? ? ? ?

d < 3kn, so that d +1 < 3kn+1 < e2kn. Hence, it is sufficient to verify that

e3qkn < 1. (8)

Since q = 1

k
m− 1

2loglogk
and n ≤ km−1− 1

loglogk , inequality (8) may be reduced to (6), and the proof is now

complete.

Remark. As long as k > em6
, the inequality of Theorem 5 holds. To show this, we need only to show that

conditions (5) and (6) hold if k > em6
. That (6) holds is obvious. For (5), it suffices to have k

1
2m log logk >

m logk; that is logk > 2m log logk(logm + log logk). When k ≥ em6
, we have 2m log logk(logm +

log logk)≤ 2(logk)1/6 log logk( 1
6 log logk+log logk)= 7

3 (logk)1/6(log logk)2. Since (log logk)< (logk)7/20

for k ≥ em6
we have 2m log logk(logm + log logk) ≤ 7

3 (logk)13/15. Finally, since (logk)2/15 ≥ 7
3 for

k ≥ em6
, condition (5) is satisfied.

We end with a table of computed values. These were all computed with a standard backtrack algo-
rithm except for w(14,3;2), w(15,3;2), and w(16,3;2), which are due to Michal Kouril [13]. The values
w(k,3;2), k ≤ 12, appeared previously in [15].
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