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Abstract

We apply results of [1] and [2] to obtain certain sufficient conditions (which involve arbitrarily
small “density") for the existence of a “k-transversal" of 7 s-block partitions of a set X. Along the way,

some questions arise of possible independent interest.

1 Introduction and definitions

In this note we prove the two theorems stated below. Section 2 contains some necessary preliminaries,

Section 3 contains the proofs, and Section 4 contains some remarks and related questions.

Definition 1. Let X be a set, and let P, ..., P, be s-block partitions of X. Then Pi,..., P separate the
points of X if for every pair of elements x,y of X, x # y, x and y belong to different blocks of at least one

of the partitions P,.

Definition 2. If P = (P(1),...,P(s)) is an (ordered) s-block partition of the set X, a transversal of P is

aset T of s elements of X, one element from each of the blocks P(i), 1 <i<s.

Definition 3. Let P;,..., P, be s-block partitions of a set X. a k-transversal of Py,...,P; is an s-element
subset T of X with the following two properties. 1) For each i, 1 <i<t, T is either a transversal of P; or

is contained in a single block of P;. 2) For at least k distinct values of i, T is a transversal of P,.

Definition 4. Fors > 2, >0, k> 1, P(s, €,k) denotes the smallest positive integer (if one exists!) with
the following property. If r > P(s,€,k) and Py, ..., P, are s-block partitions of a set X which separates the

points of X, and |X| > &s', then there exists a k-transversal of Py,...,P,.
Theorem 1. P(2,¢€,k) and P(3,€,k) exist for all € > 0 and all k > 1.

Theorem 2. Let s > 2 be fixed. If P(s,€,1) exists for all € > 0 then P(s, €,k) exists for all € > 0 and all
k> 1.



2 Preliminaries and further definitions

Lets>2andt > 1 be given, let A= {1,...,s} and let A’ be the 7-fold cartesian product A’ = {a; ...q, :
a €A, 1<i<t}.
Let Py, ..., P, be s-block partitions of a set X which separate the points of X. Order the blocks of each

partition P; in an arbitrary way, say
P =(P(i,1),...,P(i,s)), 1<i<t.
Define the mapping g from X into A’ by setting, for each element x of X,
g(x)=ay--a;, wherex € P(1,a;)N---NP(t,a).

Note that g is injective, since Py, ..., P, separate the points of X.

Definition 5. Lets > 2,1letA = {1,...,s}, and let k,7 be positive integers with r > k. Consider any s x ¢
matrix (a;j), 1 <i<s, 1 < j<t, which has the property that each column of this matrix is either constant
(perhaps different constants for different columns) or is some permutation of the elements of A (perhaps
different permutations for different columns), and such that at least k of the columns are non-constant.

Then the s rows of such a matrix, regarded as elements of A’, from a k-complementary set in A'.
(This definition, and the mapping g above, is essentially due to Judith Q. Longyear [8].)

Remark. Let Pj,..., P, be s-block partitions of a set X which separate the points of X, and let ¥ = g(X).
It follows from the definition of g that there exists a k-transversal of Pj,..., P if and only if Y contains a

k-complementary set.

3 Proofs

In view of the preceding Remark, P(s,€,k) (Definition 4) is the smallest positive integer (if one exists)
with the following property.

If A={l1,...,s}, t > P(s,&,k), and Y is any subset of A’ with |Y| > €s', then Y contains a k-
complementary set.

To prove Theorem 1, we make use of the following known fact.

Fact. (Corollary to Theorem 1 in [2]). The proof of this fact requires the main result given in [1]. ) If
F is either the 2-element field or the 3-element field, and k > 1, € > 0 are given, there exists an integer
n(|F|,€,k) such that if ¢ > n(|F|, €,k), V is a t-dimensional vector space over F and Y is any subset of
V with |[Y]| > €|V
subspace) of V.

, then Y contains a k-dimensional affine subspace (translate of a k-dimensional vector

Note that any k-dimensional affine subspace of V contains a 1-dimensional affine subspace in which
there are at least k nonconstant coordinates. (Here we are viewing V as F"’.)

Now lets=2ors=3,letk>1,&>0be given, letA={1,...,s}, and letr > n(|A|,€,k). Let Y be any
subset of A” with Y > &5’ = g|A’|. Then identifying A with the s-element field F, and identifying A’ with



the 7-dimensional vector space V over F, it follows from the Fact above and the following remark that ¥
contains a 1-dimensional affine subspace with at least £ non-constant coordinates, that is, ¥ contains a
k-complementary set.
This shows that P(s,€,k) < n(|A|,¢€,k) (for s = 2 or s = 3), and completes the proof of Theorem 1.
The proof of Theorem 2 is obtained by a slight modification of the proof of Theorem 1 in [2]. For
the sake of completeness we give the modified argument here.

Lemma. Let s > 2 and k > 1 be fixed, and assume that P(s,€,1) exist for all € > 0. Then for each
positive integer r, the existence of P(s,1/(r+ 1),k) implies the existence of P(s,1/r,k+1).

Proof. LetA=1{1,...,s},letno=P(s,1/(r+1),k), and let e be the number of distinct k-complementary
sets in A™. Let €' = 1/(er?), and let n1 = P(s,&’,1). We now claim that P(s,1/r,k+ 1) < no+nt.

To see this, let Y be any subset of A" with |Y| > 1/r-s"°"". We need to show that ¥ contains a
(k+ 1)-complementary set.

For each z € A™, let W, denote the set A" x {z}. Then

An0+nl _ U{VVZ z EAm}.

Note that if [Y NW;| > 1/(r+ 1) - s, then by the definition of no, Y must contain a k-complementary
set.

Let u denote the number of elements z in A™ such that |[YNW,| < 1/(r+1)-s.

Then we have

1/r.sno+nl < |Y| :Z|Y0VVZ| Su/(r+1)_sn0+(snl_u)'srw’

hence u(1—1/(r+1)) <s™(1—1/r), u <s"(1—1/r?), s"/r* < s" —u.
Therefore there are

d=s"—u>s"/r

elements z in A™ such that
YW, > 1/(r+1)-5",

and each of these sets Y N W, contains a k-complementary set

Uy x {z},

where U, is a k-complementary set contained in A™.
Since there are only e distinct k-complementary sets in A", at least d/e of the sets U, x {z} must
have the form U x {z} for a fixed k-complementary set U in A™. Let these be

Ux{zi},..., U x{z},

where h > d/e.



LetY' = {zi,...,24}. Then Y’ is a subset of A" with
Y|=h>d]e>s")(er’) =€ -s".
Y|=h=>d/

Therefore Y’ contains a 1-complementary set. Re-numbering if necessary, let this 1-complementary set

bezl,...,zs.

We now have that ¥ contains U x {z1},...,U X {z;}, where U is a k-complementary set in A"
and {zi,...,z} is a 1-complementary set in A™. If U = {wy,...,ws}, then Y contains the (k+ 1)-
complementary set

W1 XZ1yeeayWs X Zs.
This completes the proof of the Lemma. O

Theorem 2 now follows from the Lemma by induction on k. Indeed, the hypothesis of Theorem 2 is
the case k = 1. For the induction step, if P(s, €,k) exists for all € > 0 then it exists for all e = 1/(r+ 1),
r > 1, hence by the Lemma P(s, 1 /r,k+ 1) exists for all r > 1, hence P(s,€,k+ 1) exists for all € > 0.

4 Remarks and questions

A combinatorial line T in A" (where A = {1,...,s}) is a 1-complementary set of a very special type.
When the 7-tuples of T are regarded as the rows of an s X ¢t matrix, then each column of this matrix is
either constant or is a single fixed permutation of the elements of A.

The celebrated Hales-Jewett theorem [7] states that if s,r are given there exists a smallest positive
integer HJ(s,r) such that if A = {1,...,s},t > HJ(s,r), and A" is r-colored (that is, a mapping ¢ : A" —
{1,...,r} is given) then there exists a combinatorial line 7 in A* which is monochromatic (that is, the
mapping c restricted to 7 is constant.)

The only known upper bounds for the function HJ (s, r) are extremely large, to say the least. (See [3—

] for elegant proofs, generalizations and applications of the Hales-Jewett theorem, and for further dis-
cussion of these bounds. See also the numerous references in the excellent survey article [3].)

Let f(s,7) denote the smallest positive integer such that if A = {1,...,s}, r > f(s,r), and A" is r-
colored then there exists a 1-complementary set in A* which is monochromatic. Perhaps a “reasonable"
(primitive recursive?!) upper bound can found for the function f(r,s).

One could also ask for bounds on the function f(s,r,k), the smallest positive integer such that if
A={1,....;s}, t > f(s,r,k), and A" is r-colored, there exists a k-complementary set in A’ which is

monochromatic.
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