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1 Introduction

In this note we take a “density theory" approach to the problem of measuring certain sets of integers
including the set of exponents for which Fermat’s Last Theorem is true. It is proved that this last set has
uniform density equal to one. This is a slightly stronger statement than has been previously made about
this set. The method is particularly simple and transparent and is applied to finding the uniform densities

of other sets of integers from Number Theory.

2 Density concepts

Let B be a set of positive integers and write B(x,y) for the number of elements in BN [x,y]. The lower
and upper uniform densities are defined as follows. Let

By =liminfB(t + 1,1 +5).

That is, s is the smallest number which occurs infinitely often as the number of elements of B which
lie in an interval of length s. It is not hard to show that lim,_,.. 8s/s exists, and this is the lower uniform
density of B, denoted by u(B):

1
u(B) = lim — liminfB(r + 1,1 + ).
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Similarly, with
B* =limsupB(t + 1, +3s),

t—oo

the upper uniform density of B is u(B) = lim,_, 3*/s, or

1
u(B) = lim — limsupB(t + 1,1 +s).
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If u(B) = u(B) = u(B), then u(B) is the (natural) uniform density of B.



With this notation the definitions of the lower asymptotic density d(B) and the upper asymptotic
density d(B) are respectively
1
d(B) =liminf —B(1,s),

s—o0 ¢
and

1
d(B) =limsup —B(1,s).
s—3o0 S

If d(B) = d(B) = d(B), then d(B) is the (natural) asymptotic density of B/
It’s clear that
u(B) < d(B) < d(B) <u(B)

for any set B, and it is easy to produce an example of a set B with d(B) = | and u(B) =0, and a set C
with d(C) = 0 and %(C) = 1. Thus the statement that a set has uniform density 1 (or uniform density 0)
is in fact stronger than the corresponding statement about asymptotic density. As another example, let S
be the set of square-free integers. It is well known that d(S) = 6/% while it can easily be shown that
u(S) =0 and u(S) = d(S).

We mention three important properties of these densities which can be proved without difficulty
directly from the definitions: 1) If A C B, then 6(A) < 6(B) where § stands for any of the density
functions defined above. 2) For either upper density, &, and any sets A and B, (AUB) < §(A) + §(B).

3) If B is a union of disjoint arithmetic progressions,

n
B=J{ait+i:1=0,1,2,...},

i=1

then u(B) exists and equals i + é +- é

3 Three lemmas

Let P = {p; < p» < p3 < ---} be the set of prime numbers and let N; = {x : x is not divisible by
P1,D2,...,Pk}. More generally, if Q = {q1,42,...,qx} is a set of distinct primes, then let Np = {x : x
is not divisible by ¢1,42,...,qx}. For any set S and integer n write S,, for the set of all x € S which are
divisible by n. We begin with a well known computation.

Lemma 1. u(Np) = (1— %)(1 - é)(l - é)

Proof. Let R =q1q> - - qx. Evidently, Ny is the disjoint union of the arithmetic progressions | J,{Rt +a}
where a ranges over the ¢ (R) elements of [1,R] which are prime to R. Hence
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Lemma 2. Let Q = {q1,92,93,. ..} be a set of primes for which

Y — =o. (1)

qi



Let S be a set of positive integers and suppose that u(S,) = 0 for each prime q in Q. Then u(S) = 0.

Proof. Let Or ={q1,42,-.,qx}- Then, for each k,

S C N, USy USy,U---US,,.

Hence,
u(s) < E(NQk) +u(Sq,) + - +ﬁ(SQk) = E(NQk)
1 1 1
= (1= )(1= ) (1= ).
q1 q2 gk
As the last product tends to zero as k — oo, the lemma is proved. O

Lemma 3. u(S) = 0 if and only if there exists a set of primes Q with infinite reciprocal sum, such that

for any sequence (q1,q2, - ..) of distinct elements of Q, u(Sq,4,.--q,) = 0 for some k.

Proof. If u(S) = 0, the conclusion is obvious with @ = P. On the other hand, if #(S) > 0 and Q is any
set of primes satisfying (1), then, using Lemma 2, we can find ¢; in Q such that #(S,,) > 0. Again,
since (Sp)q = Spq for distinct primes p and ¢, and using Lemma 2, we can find ¢ in Q — {g:} such
that %(S,,4,) > 0. Continuing in this mander we construct the required infinite sequence such that
(S q5--q,) > 0 for all k. O

4 Applications

Before moving on to Fermat’s last theorem we prove striking properties concerning the number of prime

factors of a “typical” integer (cf. [4] Sections 22.11, 22.12).
Theorem 1. u(P) = 0.
Proof. Take S = P in Lemma 2. Each S, is a singleton. O

Theorem 2. Let G' = {x : x is the product of no more than t prime numbers (counting multiplicities)}.
Then u(G') = 0.

Proof. G' = PU{1} and so u(G') = 0. Proceeding inductively,
(G, =pG" andso u((G"),)=0.
By Lemma 2 u(G'*!) = 0. (Here we use kA = {kx: x € A} and the fact that u(kA) = }i(A).) O
Using Lemma 3 we can prove the more difficult result presented in the next theorem.

Theorem 3. Let H' = {x : x has t or fewer prime divisors}. Then u(H") = 0.

Proof. Fix t, take Q = P, and let q1,q2,...,q:+1 be any 7 + 1 distinct primes. Clearly, (H')g,45--q,., 18
empty and we may apply Lemma 3. O



Finally, we prove that the set of exponents, F', for whic Fermat’s Last Theorem is false has uniform
density zero. Faltings” Theorem [ ] implies that for each odd prime p the equation x” + y” = zP has only
finitely many primitive solutions, and recently Heath-Brown [5] and Granville [3] have shown indepen-
dently as a corollary to Faltings’ Theorem that the set 7' of exponents n for which x* +y" = 7" has no
primitive solution (and hence no solution at all in positive integers) has natural asymptotic density 1.
Of course, the idea behind our proof is also the use of Faltings’ Theorem for prime exponents p. Both
Heath-Brown and Granville attribute this idea to Filaseta [2].

Theorem 4. Let F be the set of all n such that X" +y" = 7" has a solution. Then u(F) = 0.

Proof. Fix any odd prime p. Then for each n > 3,

p divides n (a”/p),, + (bn/[))p — (CH/P)F

A =" =

(a,b,c) =1 @y =1 f°
a7 7C =

and so, by Faltings’ Theorem, each odd prime p divides only finitely many elements of F (since a''p
must assume at most finitely many values with a > 1). Therefore F), is finite and so, by Lemma 2, F’ has

uniform density 0. O

It is apparently still unknown whether or not Fermat’s Last Theorem is true for an infinite set of
prime exponents. Filaseta proved that for any n > 3, Fermat’s Last theorem is true for exponent kn for all
large k. The proof of this can be gleened from the proof of Theorem 4. It is interesting to note that with
this result we can easily construct a sequence of products of two primes, q142,49394,459s,- - -, sSuch that

Fermat’s Last Theorem is true for each member of the sequence and each prime p equals exactly one g;.

References

[1] G. Faltings, Endlichkeitssatze fur abelsche varietaten uber zahlkorpern, Invent. Math. 73 (1983),
349-366.

[2] M. Filaseta, An application of Faltings’ results to Fermat’s Last Theorem, C. R. Math. Rep. Acad.
Sci. Canada 6 (1984), 31-32.

[3] A. Granville, The set of exponents, for which Fermat’s Last Theorem is true, has density one, C. R.
Math. Rep. Acad. Sci. Canada 8 (1985), 55-60.

[4] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, Oxford, 1960.

[5]1 D. Heath-Brown, Fermat’s Last Theorem for “almost all” exponents, Bull. London Math. Soc. 17
(1985), 15-16.



	Introduction
	Density concepts
	Three lemmas
	Applications

