Probabilistic Prospects of Stackelberg Leader and Follower

A. Alkan, T. C. Brown, M. Sertel

Citation data: Ahmet Alkan, T.C. Brown, and Murat Sertel, Probabilistic prospects of Stackelberg leader and
follower, J. Optimization Theory and Applications 39 (1983), 379-389.

Abstract

In this paper, we consider the family of all m x n bimatrix games, whose payoff entries are the
players’ orderings of the outcomes, and count fraction of games whose Stackelberg solution is the
leader’s hth best outcome and the follower’s kth best outcome (4, k < mn). We conclude that the av-
erage leader and follower enjoy symmetric prospects, and that the advantage lies not in the leadership
role, but in the relative size of the player’s strategy space.

1 Introduction

The Von Stackelberg solution concept for games has found many applications in engineering and eco-
nomics. It is a staple element of control theory and its extension to dynamic games. In economics, the
importance of its original role in understanding monopolistic markets may have dwindled, but our theory
of economic design has restaged it in a new and enlarged role.

Typically, this solution concept has been applied in models involving an asymmetry between leader
and follower(s) as players, the former enjoying an upper or first hand. Indeed, the folklore of economists
may very well associate a higher value with the leadership position than with a followership. On the other
hand, it is sometimes not a simple matter to unscramble virtual leaderhip from real leadership and to tell
who (if anybody) has an upper hand, as in sharecropping with tenant followers, who may successfully
pretend to have different characteristics than their true ones (see Ref. [1]). Quite directly, however, there
are many examples where each of two players would prefer being the follower rather than the leader

against the other, as seen in the example below.

Example 1.1. Consider the following bimatrix game:

(3,6) (4,4) (9,3)
(2,7) (5,5) (7,
8,1) (1,8) (6,9

whose entries denote, respectively, the row-player’s and column-player’s rankings of the outcomes.
Under the Von Stackelberge solution concept, the leader (i.e., the player who acts first) attains his 7th
best outcome and the follower attains his 2nd best outcome, so that each player would be better off by

playing this game as a follower, rather than a leader.



In summary, there is enough reason to question the asymmetry supposedly built into the Von Stack-
elberg solution concept and often understood to favor the leader. With this motivation, we consider here
two-person games whose leaders and followers come from the same population; the former has m pos-
sible actions and the latter has n possible actions, each totally ordering the mn combinations as Ist, ...,
mnth best; any leader (resp., follower) is just as likely to play with any given follower (resp., leader) as
another. We investigate the probabilities that the ith best outcome for leader and the kth best outcome
for follower materialize as Von Stackelberg solution. Among a number of results, Theorem 1 shows a
strong symmetry between the two roles in obtaining Ist, ..., mnth best, depending more on m/n than
on anything else considered. The results seem to generously justify our skepticism regarding a built-in
asymmetry in the value of the leadership and followership roles in the context of the Von Stackelberg
solution.

The paper is the beginning of an exploration which we believe should be continued. Our closing
remarks seach for directions in this regard, indicating also a natural (Von Stackelberg) type of experiment,
giving rise to a family of probability functions (a matter which probabilists may find to be of interest),
as they arise in this inquiry.

2 Results

Throughout, m and n will be positive integers, and we will denote
{1,....m}=M, {l,....n} =N, {1,...,mn}=MN.

Define €' (m,n) to be the set of all m x n matrices whose entries are all distinct members of MN. When

m and n are understood, we will feel free to abbreviate €' (m,n) to ¢’. Each pair (A, B) of matrices
A=(a(i,j)), B=(b(i,j)) € C(mn)

is regarded as a game. Imagine two players, one with m and the other with n possible actions, and regard
A (resp., B) as displaying the 1st (resp., 2nd) player’s ranking of the outcomes arising when the 1st player
chooses his ith action and the 2nd player chooses his jth action. Given any B € € (m,n), we define the

reaction of B as the function jp : M — N with
b(i, jp(i)) = minb(i, j), i€ M.
JEN
The Von Stackelberg solution of a game (A, B) is the pair

(@77 = (", js(i")

satisfying

a(i*,j*) = grel}‘gla(l,m(l))



The Von Stackelberg value of such a game (A, B) is the pair
v(A,B,) = (r(A,B,),s(A,B)) € MN x MN,

defined through
r(A,B) =a(i",j") and s(A,B) = b(i", j");

and we refer to its 1st (resp., 2nd) coordinate as the Von Stackelberg value of the game (A,B) to the
leader A (resp., follower B).
Given any pair (m,n) and an index set T, for any family

4 (m,n) = {(A,B); € €(m,n) x€(m,n):t €T},
it is of interest to inquire into the relative frequency of occurrence of a Von Stackelberg value
v=(h,k) € MN x MN.

Such a family (or population) may repeat certain games many times and each with varying frequency.
Here, we consider families ¢ where all games are repeated with the same relative frequency—with no
loss of generality, not repeated. Thus, we restric attention to the family ¢ isomorphic to € x €.

The task of our theorem is to evaluate a certain matrix of probabilities and to draw conclusions from

this. The matrix in question is given below,

y(n,k)  a(h) Bk
1= ve(h,k) op(h)  Pp(k).
v (hk) at(h) BA(k)

~—

For any A,B € ¢ and any h,k € MN, its entries are defined as follows: y(h,k) (resp., yg(h,k),y*(h,k))
is the porbabiliity of observing the Von Stackelberg value v = (h,k) (resp., when B € C is fixed, when
A € € is fixed); a(h) (resp., op(H), o (h)) is the probability of observing the leader’s Von Stackelberg
value r = h (resp., when B € € is fixed, when A € % is fixed); and B (k) (resp., Bg(k), B (k)) is the
probability of observing the follower’s Von Stackelberg value s = k (resp., when B € % is fixed, when
A € ¥ is fixed).

Theorem 1. The entries of the matrix I1 are displayed in (1), where
g (h) =1{j € N :a(i,j) > h}|

and i(h) is defined by

a(i(h),j)=h, forsome j€ N..



(’"")‘l(m""’), if1<h<mn—m+1 ’"”)‘1(’""—"), ifl1<k<mn+n+1

(X(h)B(k) m m—1 n n—1
0, ifmn—m+1<h<mn 0, ifmn+n+1<k<mn
m~', if k = b(i, jg(i)), for some i € M
o (h) s (k) o(h) .
0, otherwise
a’ (h)B(k) m "1 iem g}'(h) B (k)

i#i(h)
(H

Proof. Take any h,k € MN. First, consider the second row of I1. Take any B € ¥, and let
b(i,j) = k.
If j # j (1), then there is no leader A € €’ with
vA,B) = (h,k),

so that
VB (h, k) =0

in this case. Otherwise, consider the set
ofp(h) ={A € € :a(i,]) = hand a(i, j,(i)) > h for every i € M},
and note that
Y(h,k) = ||~ | ().

Now,
%] = (mn);

and, counting .27 (h) is a matter of reckoning in how many ways we can design a matrix A € ¢ such that

a(i,j)=h

and the m — 1 places other than (7, j) in the graph

L(jp) ={(0.J) eMxN:j=j (i)}

have entries
a(i,j) € {h+1,...,mn}.

Thus,
(mnfh)(m_l)!(mn—m)u 1f1§h§mn—m+l,

m—1

|75 (h)| = ,
0, ifmn—m—1<h<mn;



and so,
) (mn)—l (mn—h)’ ifl <h<mn—m+1,and,

m m—1
vs(h,k) = k=b(i, jg(i)) for some i € M,
0, otherwise.
Note that
b(i, j, () =k

exactly for m elements k € MN. Hence,

(m")il(mnfh), ifl1<h<mn—m+1

ap(h) = Y pslhk)=1¢ """ "7
kEMN 0, ifmn—m+1<h<mn,

so that op(h) = a(h). Also note that
m”*z"’”*l mn—h\ _ (mn
= m—1) \\n)

m~', if k = b(i, jp(i)), for some i € M

Hence

hEMN 0, otherwise.

Check that
v8(h,k) = ou(h)Bp(k).

Thus, the second row of Il is as given in (1).
Turning next to the third row of I1, take any A € %, define

WA(hk) ={B €€ :v(A,B<) = (hk)},

and note that

YA (h,k) = || WA (k).

For each f € NM, define
Zy(k)={B€ ¥ j,= fand b(i, (i) = k, for some i € M},

and note that
Z(k)NZp(k)=0 if f' # fand f,f € NY.

Denote

z(k) |J z(k).

fENM

For each f € N also define

WA (h,k) = {B € Z;(k) : v(A,B) = (h,K)},



and note that f # f’ implies
WERNWEK) =0 (1.1 eN™).

Finally, define

FAh) = {f € N™ :a(i(h), f(i(h))) = h and a(i, f(i)) > h, for every i € M},

and see that

We(nk) =Y Wrhb|= Y |[Wr(hk)
fENM feFA(h)

There are two important observations to be made at this point. The first is that, for each f € .7 A(h),

Wi (b k)| = m™Z¢ (k)

so that
WA K =m™ Y 1Z (k).
feFAh)
Secondly,
1Zs(k)| = |Zp k)|, forany f,f" €N,
and so
WA, K)| = m™ | ZAWINYIE Y 1Zp ()] = m™ | ZA W) INY| | Z(K)].
fenM
Check that

|74l = [T &th), INY|=nt",
ieM
i#i(h)

1Z(k)| = m<mn_k>n!(mn—n)!.

and compute

n—1
Z(k) equals the number of ways one can design a matrix B € ¢ whose any row has the entry k and n — 1

other elements from the set {k+1,...,mn}. Thus,

—1 . / mn\ —1 (mn—k . o
'YA(/’ZJC): " (Héﬁ_](lﬁ)ﬁ(h)) (n) (n—])? lflﬁkﬁmn n 1,

0, ifmn—n—1<k<mn.

To complete the proof of Theorem 1 for the third row of IT, see that

o)=Y, v'(hk)y=m" T &'(h).

kEMN ieM
is#i(h)



Next, note that

FAMNFAH) =0, h,h' € MN,
feN" = fe 74h),& for some h € MN,
so that
Y [lem=Y 17 =IN"=m"
heMN ieM hemn
ii(h)
Hence

(mn)*l(mnfk), lflSkSmn—f—n—{—L

=Y Y'ky=q " "

hEMN 0, ifmn+n+1<k<mn,

and so B4 (k) = B(k). It only remains to check that

YA (h, j) = a (h)B(k),

as desired.

Finally, returning to the first row of I1, simply observe that

ah) =€ ), as(h), Bk)=|7"" ), (k)

Be¥ A€¥

thus
Y(h,k) = a(h)B (k).

This completes the proof of Theorem 1 O

To highlight certain aspects of our theorem, a few remarks are in order.

3 Remarks

(i) The fact that
op(h) = o(h), foranyBe€ €,

shows that the proportion of leaders A € € attaining their hth best outcome at the Von Stackelberg
solution is the same regardless of the follower B € ¥ with which they are to play. Similarly, regardless
of which leader A € ¢’ they are to play, the proportion of followers B € ¢ attaining their kth best outcome
is B(k), for

BA(k) = B(k), foreveryA €.

(i1) An intuitively expected result of the type of optimization involved in our solution concept for
games is revealed here in the fact that the functions @ and 3 are decreasing (strictly decreasing on their
respective supports). There properties of @ and f8 are shared, of course, by ap and B# respectively

(A, B € ¥); not so, however, for functions ot and Bg. To see this for o, take m = 2mn = 3; consider



the matrix

and compute
as(3) =1/9<2/9 = a’(4).

Regarding B, note that this function is constant on its support, but that its support may have gaps, i.e.,
need not consist of consecutive integers.

(iii) The function o is discretely convex, in the sense that
(1/2)(a(h—1)+a(h+1)) > o(h), whenever2 << mn—1

(strictly so, in the sense that this inequality is strict for 4 in the support of o), and similarly for 3.

(iv) It is of interest to note that we obtain the product formulas
v(h,k) = a(h)B(k), vs(h,k) = ap(h)Bs(k),

v (h,k) = o () B (k),

showing that the values r and s are independently distributed, even when A or B is fixed.
(v) A possibly more striking insight offered by our theorem (and one which runs against the prima
facie asymmetry build into the Von Stackelberg solution concept for games) is a certain symmetry in the

structure of the functions 7; let

imagine

¢ =¢m',n), 9 =9mn);

and finally consider the associated @', 8’, Y, Now, for any h,k € MN, we see that

and so
v(h,k) =¥ (k, ).

Thus, what makes a difference to the probability of a player attaining its /th best outcome (/ =hor [ = k)
as Von Stackelberg value is the relative cardinality of the player’s action set, rather than whether or not
the player enjoys leadership.

In fact, there is a further symmetry to be noted in the prospects of leader and follower. From the

convexity of & and B remarked in (iii) above, it follows that there is always a real number
I*(m,n) € [1,mn],

such that, if m > n, then
a(l) S B(1), forevery = I (m,n);



and, if m > n, then the reverse inequalities hold. This reinforces the importance of the relative sizes of m

and n as determinant of the players’ relative prospects in the context of the Von Stackelberg soltuion.

4 Conclusions

Apart from the exposition in Section 1, the results of Section 2, and the consequences remarked in
Section 3, there remain a few matters to be touched upon toward further research which may follow from
our present query-answer exercise.

For probabilists, it may be worth noting that a natural sort of experiment has been studied here, where
a Von Stackelberg leader and follower, each coming from a certain population, have been confronted with
one another in a game, and the value of the Von Stackelberg solution has been examined. Somewhat more
involved, at least on the face of it, than the experiment of tossing a coin, this experiment defines a family
of probabilities v < (h,k) for each pair (m,n) of positive integers. Probabilists may be interested in
studying, for example, the limiting distributions as m/n tends to one or another real number. One may
also suggest studying the sitributions of values of game-theoretic solutions other than the Von Stackelberg
solution, and these with many players of more general types of preferences than the total orderes here
assumed over outcomes of joint actions.

Returning to the Von Stackelberg solution, one may ask, as we have done, how the present results
are modified when one adopts a pretend-but-perform mechanism (PPM) in the style of Alkan and Sertal
(Ref. [1]), i.e., when one allows the follower to declare to have an identity B € ¢, possible other than
genuine, so long as this player’s behavior does not then belie this claim of identity. Counting and com-
puting the numbers desired in these circumstances turns out to be somewhat more involved than in our
current tale, and the results do not seem to collapse into any form of proximate simplicity. Nevertheless,
we intend to announce some less tidy results in this domain separately.

As to the economic implications of this game-theoretic investigation, the symmetry revealed between
leadership and followership in the Von Stackelberg solution indeed runs counter to the attributes of power
and advantage which economic folklore associates with the leader. Yet, this symmetry may well exist,
owing to the fact that here we have treated any total order as representing a possible player, whereas the
preferences of typical economic agents may conform to certain regularities, viz., continuity, convexity,
monotonicity. It would be of interest to see what difference it would make in our results to restrict
players’ preferences to come from such economic domains.

Finally, without attempting to sample the rich literature which has gathered around the Von Stackel-
berg solution concept and related themes since Von Stackelberg (Refs. [4] and [5]), it may be appropriate
to indicate to future researchers two relevant studies worth consulting. We note here the recent duopoly
analysis by Ono (Ref. [3]) for its endogenous selection of the leadership-followership roles. See also
Moulin (Ref. [2]) for a similar inquiry and an analysis utilizing leadership prospects to identify stable

cooperative outcomes.
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