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Abstract

For each positive integer n, let the set of all 2-colorings of the interval [1;n] = f1;2; : : : ;ng be given

the uniform probability distribution, that is, each of the 2n colorings is assigned probability 2�n. Let f

be any function such that f (k)= logk!∞ as k!∞. For convenience we assume that f (k)2k is always

a positive integer. We show that the probability that a random 2-coloring of [1; f (k)2k] produces a

monochromatic k-term arithmetic progression tends to 1 as k ! ∞. We call f (k)2k a pseudo upper

bound for the van der Waerden function. We also prove the “density version” of this result.

1 Introduction

Let w denote the van der Waerden function. By definition, for each integer k � 1, w(k) is the small-
est positive integer such that every 2-coloring of the interval [1;w(k)] = f1;2; : : : ;w(k)g produces a
monochromatic k-term arithmetic progression. (Equivalently, for every partition of [1;w(k)] into at most
two parts, at least one part contains a k-term arithmetic progression.)

The existence of w(k), k � 1, was proved by van der Waerden in 1927 [7]. The best known lower
bound for w(k) is w(k)> (2k=2ek)(1+o(1)) (see [4]). For p prime, Berlekamp [2] showed that w(p+

1) � p2p. (For some related lower bounds, see [1, 3, 5].) The best known upper bound (a “wowzer”
function, as described in [4]) is due to Shelah [6]. R. L. Graham has offered $1000 (see [4]) for a proof

that w(k)< 22�
�
�
2

, a tower of height k.
Let f be any function such that f (k)= logk ! ∞ as k ! ∞. For convenience we assume that f (k)2k

is always a positive integer.
In this note we show that “almost all“ of the 2-colorings of [1; f (k)2k] produce a monochromatic

k-term arithmetic progression.
This means that if Sk is the set of “exceptional” colorings, that is, if nk = f (k)2k and Sk is the set

of all 2-colorings of [1;nk] for which there is no monochromatic k-term arithmetic progression, then
jSkj �2�nk ! 0 as k ! ∞.

We then say that f (k)2k is a pseudo upper bound for the van der Waerden function.
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To illustrate the method, consider 2-colorings of the interval [1; tk], where t = k2k, and let Tk denote
the set of all those 2-colorings of [1; tk] for which none of the t intervals [1;k], [k+1;2k], . . . , [(t�1)k+
1; tk] is monochromatic. Then

jTkj �2�tk = (2k�2)t �2�tk =

�
1� 1

2k�1

�
< e�2k ! 0 as k ! ∞:

Therefore “almost all” of the 2-colorings of [1;k22k] produce a monochromatic k-term arithmetic
progression; moreover, this monochromatic progression is one the intervals [1;k], [k + 1;2k],. . . , [(t �
1)k+1; tk].

The proof of Theorem 1 below consists of a refinement of the above simple argument, in order to
reduce k22k to f (k)2k.

In the argument above, we used certain (pairwise disjoint) arithmetic progressions with common
difference 1. In the proofs of Theorems 1 and 2, we use certain progressions with common differences
1;k;k2; : : : ;ks, any two of which have at most one point in common.

Theorem 2 is the “density version” of Theorem 1. (Note that Theorem 1 follows from the case
ε = 1=2 of Theorem 2.)

2 Results

Theorem 1. Let f be any function such that f (k)= logk!∞ as k!∞. For convenience we assume that

f (k)2k is always a positive integer. For each positive integer n, let the set of all 2-colorings of [1;n] =
f1;2; : : : ;ng be given the uniform probability distribution, that is, each of the 2n colorings is assigned

probability 2�n. Then the probability that a random 2-coloring of [1; f (k)2k] produces a monochromatic

k-term arithmetic progression, tends to 1 as k ! ∞.

Proof. For each positive integer k � 2, let nk = f (k)2k. Let Sk denote the set of all those 2-colorings
of [1;nk] which do not produce any monochromatic k-term arithmetic progression. We will show that
limk!∞ jSkj �2�nk = 0.

Let n = nk = f (k)2k. Define the integer s = sk by k2s � n < k2s+2. Let n = ksq+ r, 0� r < ks �pn.
Let us assume without loss of generality that f (k)< k2. (The previous discussion has already handled

the case f (k)� k2.)
Some easy calculations show that, as k ! ∞,

s
k

ks

2k ! 0 and
s
k

ksq
2k ! ∞:

These facts are used later in the proof.
The interval [1;n] consists of q consecutive intervals, B1;B2; : : : ;Bq, each of length ks, followed by a

single interval of length r, r < ks.
We wish to examine 2-colorings of the interval B1. Let us identify B1 (by shifting it one unit to the

left) with the interval [0;ks�1], and further identify the interval [0;ks�1] with the set of s-tuples

C = fx0x1 � � �xs�1 : 0� xi � k�1g;
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under the correspondence x0x1 � � �xs�1 $ ∑
s�1
i=1 xiki. That is, we identify each integer in [0;ks� 1] with

the s-tuple of the digits in its k-ary expansion.
Under this identification, B1 may be visualized as the s-dimensional cube C, k units on a side. For

our purposes, we say that a line in the cube C is a set of the form

fx0 � � �x j�1yx j+1 � � �xs�1 : 0� y� k�1g;

where the xi’s are fixed. If the jth coordinate is the “moving” coordinate, then the k points in this line
correspond to k integers in B1 which form an arithmetic progression with common difference k j.

There are sks�1 lines in the cube C. For each line u in C, let Ai denote the set of 2-colorings of C for
which the line u is monochromatic. Then jAuj = 2 �2ks

�k. Given any two distinct lines u and v, u and v

are either disjoint or meet in 1 point. In either case, jAu\Avj= 4 �2ks
�2k. Therefore

�����
[

u
Au

������∑
u
jAuj�∑

u;v
jAu\Avj

= sks�1 �2 �2ks
�k�

�
sks�1

2

�
�4 �2ks

�2k

> 2ks s
k

ks

2k

for sufficiently large k, since (s=k)(ks=2k)! 0.
Let z denote the number of colorings of the cube C for which none of the sks�1 lines in C are

monochromatic. Then (for sufficiently large k)

z = 2ks �
�����
[

u
Au

�����< 2ks
�

1� s
k

ks

2k

�
:

The set Sk defined at the beginning of the proof has jSkj � zq2r, so that

jSkj �2�n <

�
1� s

k
ks

2k

�q

< e�(s=k)(ksq=2k):

Since (s=k)(ksq=2k)! ∞ as k ! ∞, the proof is complete.

Theorem 2. Let ε be fixed, 0 < ε < 1. Let f be any function such that f (k)= logk ! ∞ as k ! ∞. Let

n = f (k)ε�k (we assume that this is always an integer), and let A be a “random εn-element subset of

[1;n],” which means that each element of [1;n] belongs to A with probability ε . Then the probability that

A contains a k-term arithmetic progression, tends to 1 as k ! ∞.

Proof. The numbers s and r are defined as in the proof of Theorem 1 (with n now defined by n =

f (k)ε�k), and again we write n = ksq+ r, 0� r < ks �pn. Next, as k ! ∞,

s
k

ks
ε

k ! 0 and
s
k

ks
ε

kq! ∞:
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(To see this it is convenient to show first that for any η > 0, the inequalities

�
1
2

log(1=ε)�η

�
1

logk
<

s
k
<

�
1
2

log(1=ε)+η

�
1

logk

hold for all sufficiently large k. For the right-hand inequality, one again needs to assume that f (k)< k2,
and handle the case f (k)> k2 by a separate argument, as in the discussion in the Introduction.)

The cube C is defined as before. Let B denote a random εjCj-element subset of C, where each element
of C belongs to B with probability ε . Let pu = Pr[u � B] = εk, where u is any one of the sks�1 lines in
C, and let puv = Pr[u� B and v� B], where u and v are distinct lines in C. Then Pr[u� B for some u]�
∑u pu�∑u;v puv.

Through each of the ks points of C there are s lines, and hence of the
�sks

�1
2

�
pairs of lines fu;vg,

exactly ks
�s

2

�
pairs meet, and the other pairs are disjoint. Then

∑
u

pu�∑
u;v

pu;v =
s
k

ks
ε

k� ks
�

s
2

�
ε

2k�1�
��

sks�1

2

�
� ks

�
s
2

��
ε

2k

=
s
k

ks
ε

k� ks
�

s
2

�
ε

2k�1� 1
2

s
k

ks
ε

k
� s

k
ks

ε
k� ε

k
�
+ ks

�
s
2

�
ε

k:

The remaining inequalities hold for sufficiently large k.
Since (s=k)ksεk� εk < 1=2, we get

∑
u

pu�∑
u;v

pu;v >
3
4

s
k

ks
ε

k� ks
�

s
2

�
ε

2k�1(1� ε):

Since 1
4 (s=k)ksεk� ks

�s
2

�
ε2k�1(1� ε)> 0, we get

∑
u

pu�∑
u;v

pu;v >
1
2

s
k

ks
ε

k:

Finally, with n = ksq+ r, if each element of [1;n] belongs to A with probability ε , then

Pr[no u� A]<

�
1� 1

2
s
k

ks
ε

k
�q

< e�(1=2)(s=k)ksekq ! 0:

3 Remarks

Note that in the proofs, the only k-term progressions considered are (some of) those whose common
differences have the form k j, where 0� j � s < 1+(k log2)=(2logk).

It would be desirable to get rid of the factor f (k), if possible. To accomplish this, evidently one needs
to use a larger collection of k-term progressions. (Using all of the (s+1)k� sk combinatorial lines in the
cube C, instead of just the sks�1 lines with one moving coordinate, does not lead us to an improvement
in f (k).)
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Perhaps, by using a sufficiently large set of progressions, one could show that (1+α)k is a pseudo
upper bound for the van der Waerden function, for every α > 0.
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