A coloring of the non-negative integers, with applications

Tom C. Brown

Department of Mathematics
Simon Fraser University
Burnaby, BC
Canada V5A 156

tbrown@sfu.ca

Citation data: T.C. Brown, A partition of the non-negative integers, with applications, INTEGERS - Elect. J.
Combin. Number Theory 5 (2005), no. 2, A2, (Proceedings of the Integers Conference 2003 in Honor of Tom
Brown’s Birthday).

Abstract

We describe a particular partition of the non-negative integers which consists of infinitely many
translates of an infinite set. This partition is used to show that a certain van der Waerden-like theorem
has no simple canonical version. The partition is also used to give a lower bound for one of the classical
van der Waerden functions, namely w(3;m), the smallest positive integer such that every m-coloring
of [1,w(3;m)] produces a monochromatic 3-term arithmetic progression. Several open questions are

mentioned.

Introduction

Let S denote the set of all distinct sums of odd powers of 2, including O as the empty sum. Then every
non-negative integer can be written uniquely in the form s+ ¢, where s € S and 7 € T, and define f(n) =s.
In other words, if 1= Y; 4q2' + ¥ even 2'> then f(n) = ¥; o4q 2. For this coloring £, the set of colors is

S, and for each s € S, f is constant on the “color class” s+ T.

A van der Waerden-like theorem, and its canonical version

We need the following definition.

Definition 1. If A ={a; <ax < --- < ay} Cw=1{0,1,2,...}, n > 2, the gap size of A is gs(A) =
max{aj;1—a;:1<j<n—1} If|A| =1, gs(A) = L.

Theorem 1. If o is finitely colored, there exist a fixed d > 1 (d depends only on the coloring) and
arbitrarily large (finite) monochromatic sets A with gs(A) = d.



This fact first appeared in [3]. A proof can be found in [12]. Various applications appear in [4,06, | I,
1.

Theorem 1 is somewhat similar in form to van der Waerden’s theorem on arithmetic progressions
[15]. (Van der Waerden’s theorem says that for every k, every finite coloring of the positive integers
produces a monochromatic k-term arithmetic progression.) However, Theorem 1 differs in a number of
ways:

Van der Waerden’s theorem does not imply Theorem 1, since the d in the conclusion of Theorem 1 is
independent of the size of the monochromatic sets A. Beck [ 1] showed the existence of a 2-coloring of @
such that if A is any monochromatic arithmetic progression with common difference d, then |A| < 2logd.
Hence the presence of large monochromatic arithmetic progressions, which is guaranteed by van der
Waerden’s theorem, is not enough to imply Theorem 1. Somewhat earlier, Justin [10] found an explicit
coloring such that if A is any monochromatic arithmetic progression with common difference d, then
|A| < h(d); in his example, the coloring is explicit but the function i(d) is not.

Theorem 1 (which has a simple proof) does not imply van der Waerden’s theorem in a simple way.
(In Chapter 14 of [8], Hindman and Strauss give a proof that Fact 1 does in fact imply van der Waerden’s
theorem — and at this point in their book, the proof does seem simple — however, a fair amount of
machinery has been developed by this point.)

Theorem | does not have a density version corresponding to Szemerédi’s theorem [14]. That is, there
exists a set X C @ with positive upper density for which there do not exist a fixed d > 1 and arbitrarily
large sets A = {a; < ay < --- < a,} C X with gs(A) = d. For an example of such a set X, see [2].

Finally, no “canonical version” of this result is known. The Erdés-Graham canonical version of van
der Waerden’s theorem ( [7]) states that if g : @ — @ is an arbitrary coloring of ® (using finitely many
or infinitely many colors) then there exist arbitrarily large arithmetic progressions A such that either g is
constant on A, i.e. |g(A)| = 1, or g is one-to-one on 4, i.e. |g(A)| = |A]|.

We show that there is no such canonical version of Theorem 1. This is Corollary 1 below.

A very brief sketch of an outline of a proof of the following result has appeared in [5]. It seems

worthwhile to fill in some of the missing details.

Theorem 2. For every A C @ (with f as described in the introduction),

% A[/25(A) < |f(A)] < 4v/]Als(A)

Corollary 1. For the coloring f above, there do not exist a fixed d and arbitrarily large sets A with
gs(A) = d on which f is either constant or 1-1.

Proof of Corollary 1. If 16gs(A) < |A|, then by Theorem 2, 1 < |f(A)| < |A]. O
To prove Theorem 2, we need the following definition.

Definition 2. For k > 0, an aligned block of size 4 is a set of 4 consecutive non-negative integers whose

smallest element is m4*, for some m > 0.



Proof of Theorem 2. Note that the first aligned block of size 4%, namely [0,4% — 1] = [0,2% — 1], is in 1-1
correspondence with the set of all binary sequences of length 2k. From this we see (by the definition of
f) that for n € [0,2% — 1], there are 2 possible values of f(n), and each value occurs exactly 2* times.
It is easy to see (using the definition of f) that the same is true for any aligned block [m4%, m4* 44k —1].
We express this more simply by saying that “each aligned block of size 4° has 2* colors, each appearing
exactly 2F times.”

Now we can establish the upper bound in Theorem 2. Let A = {ap < aj < ap < --- < a,} C ®. Then
a, < ap+ngs(A) =ap+ (JA] — 1)gs(A), or

ap —agp < |A|gS(A)

Choose s minimal so that A is contained in the union of two adjacent aligned blocks of size 4°. (Two

blocks are necessary in case A contains both m4* — 1 and m4® for some m.) Then
4 < a,—a.

Since each aligned block of size 4° has 2° colors,
Fa) <2.2"

Putting these three inequalities together gives

[F(A)] < 4v/[Algs(A).

Next, we establish the lower bound for |f(A)|, which requires a bit more care. We will use the
following Lemma.

Lemma 1. For each k > 0, an two aligned blocks of size 4% (consecutive or not) are either colored

identically, or have no color in common.

Proof of Lemma 1. Consider the aligned blocks [p4X, p4* + 4% — 1] and [g4*, g4* + 4% — 1]. By the defi-
nition of f (and since 4* is an even power of 2), f(p4*) = f(p)4X, so that f(p4*) = f(q4") if and only if
f(p) = f(q). Also, for 0 < j < 4k —1, f(pdk + j) = f(p4*) + f(j). This last equality obviously holds
if p =0, and for p > 0 it holds since then each power of 2 which occurs in j is less than each power of
2 which occurs in p4*. Thus the blocks [p4*, p4* 4+4% — 1] and [¢4*, g4* + 4% — 1] are colored identically
if f(p) = f(g), and have no color in common if f(p) # f(g)-

Proceeding with the lower bound in Theorem 2, we note that for k > 1, the colors of any aligned
block of size 4* have the form UUVV, where U and V are blocks of size 41,

Next, we note that any block of size 4k, aligned or not, contains at least 2k colors. for let A be any
block of size 4*. Let the first element of A lie in the aligned block S of size 4, and let T be the aligned
block of size 4F which immediately succeeds S. If S and T are colored identically, then the elements of
f(A) are just a cyclic permutation of the elements of f(S), and hence the block A contains exactly 2¢
colors. By Lemma 1, the remaining case is when S,7 have no color in common. In this case, by the
preceding paragraph, f(S)f(T) = UUVVXXYY, where no two of U,V,X,Y have a color in common,



and so U,V,X,Y are of size 4=!. Then f(A), which has size 4%, contains either UV or VX or XY, and
so has at least 21 4-2K=1 = 2% colors.

Finally, we note that for s > 1, k > 1, every set of 4° consecutive aligned blocks of size 4¢ contains
at least 2° blocks of size 4%, no two of which have a common color. This follows from the fact that these
p® blocks have the form [p4*, p4¥ + 4k —1],1 < p <t +4° — 1, for some ¢. The block f ([t,z +4° —1])
has at least 2° colors, by the preceding paragraph. If f(p) # f(q), where t < p < g <t+4°—1, then
f(p4*) # f(q4%), so by Lemma 1 the two blocks [p4*, p4* + 4% — 1] and [¢4*, g4* + 4¥ — 1] have no color
in common.

Now let A C @ be given. Choose k so that 4~ ! < gs(A) < 4¥. Choose ¢ minimal so that A is contained
in the union of 7 consecutive aligned blocks of size 4. Then A meets each of these blocks (by the choice
of k), and

|A| < r4*.

Choose s so that 4° <t < 4°t!. Then among the r consecutive aligned blocks of size 4X are at least 2°

blocks of size 4%, no two of which have a color in common. Since each of the 7 blocks meets A, we have
28 <f(A)].

Thus |A| <14k < 4454451 <4 £(A)]?-4-gs(A), so ++/|A]/gsA < |f(A)]. O

A bound for a van der Waerden function

Definition 3. For m > 1, let w(3;m) denote the smallest positive integer such that every m-coloring of

[1,w(3;m)] produces a monochromatic 3-term arithmetic progression.
Theorem 3. Forallm > 1, w(3;m) > 1m?.

Proof. For k > 1, the coloring f described in the introduction colors the interval [0,2%*! — 1] with
2% colors. The colors are the sums (including 0 as the empty sum) of distinct elements of the set
{21,23,25, e ,22]‘_1}. The color classes are subsets of the translates (by the 2* colors) of the set Sj of
sums (including 0 as the empty sum) of distinct elements of the set {20,22,24 ... 22k} = {40 41 42 4%},
It is easy to see that Sy contains no 3-term arithmetic progression. Hence, with respect to the col-
oring f, there is no monochromatic 3-term arithmetic progression in [0,2%**! —1]. The coloring f
shows that for k > 1, w(3;2k) > 22+l For a general m, choose k so that 2k <m< 2k+1 " Then
w(3;m) > w(3;2) > 2%F1 = 192k42 12, O

Remarks

1. The lower bound in Theorem 3 is not the best possible. Indeed, in the standard reference Ramsey
Theory (by R. L. Graham, B. L. Rothschild, and J. H. Spencer, 2nd edition, 1990, John Wiley &

Sons, New York), the authors show that for some positive constant ¢, w(3;m) > mlclogm)



2. Of course, one would like to have an upper bound for the function w(3;m). The only bound known
to me is w(3;m) < (%)yﬂ for m > 4. This bound comes from [9], and is mentioned in [12]. The
coloring f on [0,2%+1 — 1], with 2¥ colors, is perhaps “efficient” in stopping all monochromatic
3-term arithmetic progressions. Cutting the number of colors in half would seem to leave too few
colors. If this were in fact true, then w(3; Zk_l) < 2241 would follow, and for general m one would

then have %mz < w(3;m) < 8m?.

3. Corollary 1 shows that a constant/1-1 canonical version of Theorem 1 is not true. We also know

by the Bergelson/Hindman/McCutcheon example that a density version of Theorem 1 is not true.

The following three simple examples, involving only 3-element sets, illustrate various combina-

tions of the truth or falsity of the “constant/1-1 versions” and the “density versions.”

(a) The simplest non-trivial case of van der Waerden’s theorem says that every finite color-
ing of the positive integers produces a monochromatic 3-term arithmetic progression. The
constant/1-1 version of this reselt holds by the Erd6s-Graham theorem, and the density ver-
sion holds by Szemerédi’s theorem.

(b) Schur’s theorem says that if the positive integers are finitely colored, then there is a monochro-
matic solution of x4y = z. The density version does not hold by taking all the odd integers.
The constant/1-1 version does not hold by coloring each x with the highest power of 2 divid-

ing x.

(c) At the meeting, Kevin O’Bryant showed me this example: if the positive integers are finitely
colored, then there is a monochromatic 3-term geometric progression (a set of the form
{a,ad,ad*}). To get the constant/1-1 version, let a coloring g of the positive integers be
given. define a new coloring % by setting 2(x) = g(2*). Then, by the Erd6s-Graham theorem,
there is a set {a,a +d,a+ 2d} on which the coloring 4 is either constant or 1-1. The density
version does not hold, since the set of square-free numbers has positive density.

(d) It seems natural to ask for a collection P of 3-element sets (if such a collection exists!) for
which: (i) Every set of positive integers with positive upper density contains an element of
P; (ii) It’s not the case that for every coloring of the positive integers, there is an element of

P on which the coloring is either constant or 1-1.

4. It would be nice to be able to say something about general colorings along the lines of Theorem 1.
Perhaps the following is true: if @ — @ is an arbitrary coloring of @, then there exist a fixed d > 1
and arbitrarily large (finite) sets A with gs(A) = d such that either

(a) at most /|A| distinct colors appear in gl4; or
(b) each color appears in g|4 at most /|A| times.

Note that for the particular coloring f, if we take d = 1, and let A = [0,4% — 1], then exactly +/|A|

distinct colors appear in f|4, and each color appears in f|4 exactly 1/|A| times.

5. We have used a particular partition of @. We would get another partition of @ (into infinitely many

translates of an infinite set) by replacing the odd powers of 2 and the even powers of 2 by arbitrary



A and B, where {A, B} is any partition of {1,2,3,...} into two infinite sets. Perhaps it’s possible

to describe all of the partitions of @ into infinitely many translates of an infinite set.
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