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Abstract

Let V(n) denote the n-dimensional vector space over the 2-element field. Let a(m, r) (respectively,
¢(m, r)) denote the smallest positive integer such that if n > a(m, r) (respectively n > ¢(m,r)), and V (n)
is arbitrarily partitioned into r classes C;, 1 <i < r, then some class C; must contain an m-dimensional
affine (respectively, combinatorial) subspace of V(n). Upper bounds for the functions a(m,r) and
¢(m,r) are investigated, as are upper bounds for the corresponding “density functions" a(m,€) and

¢(m,€).

1 Introduction and definitions

Throughout, V() denotes the n-dimensional vector space over the 2-element field F, = {0, 1}:
V(n)={(x1,...,xn) :x; € Fo,1 <i<m}.

For integers m > 1, r > 1, a(m,r) is defined to be the smallest positive integer such that if n > a(m,r)
and V(n) is arbitrarily partitioned into r classes C;, 1 < i < r, then some class C; contains an affine
m-space. (An affine m-space is any translate (coset) of an m-dimensional vector subspace of V(n). An
affine 1-space is usually called an affine line.)

Similarly, c(m,r) is defined to be the smallest positive integer such that if n > c¢(m,r) and V(n)
is arbitrarily partitioned into r classes then some class must contain a combinatorial m-space. (The
definition of combinatorial m-space is given in Section 3 below.)

The existence of a(m,r) and c(m,r) for all m,r is a consequence of a special case of the extended
Hales-Jewett theorem [5, 6].

In this note we investigate upper bounds for the functions a(m,r) and c(m,r).

We also inverstigate upper bounds for the corresponding density functions d(m, €) and ¢(m, €), which
are defined as follows.

For any integer m > 1 and real number € > 0, a(m, €) (respectively, ¢(m,€)) is defined to be the
smallest integer such that if n > a(m, €) (respectively, n > ¢(m, €)) and A is an arbitrary subset of V(n)
which contains at least €|V (n)| elements, then A must contain an affine (respectively, combinatorial)

m-space.



The existence of a(m,&) follows from a result of Brown and Buhler [2, Lemma 1], which in turn
is based upon a lemma of Szemerédi [7]. (See also Graham, Rothschild, and Spencer [5, p. 44] and
Graham [4, p. 19].)

The existence of ¢(m, €) is a consequence of a different result of Brown and Buhler [3]. (The exis-

tence of a(m,€) also folows from this latter result.)

2 Upper bounds for a(m,r) and a(m, €)

For the definitions of a(m,r) and a(m,€), see Section 1.

Theorem 1. Form > 1, k > 1,
a(m,27%) < 2™k 42). 1)

Proof. Letm > 1,k > 1 be given, and let n = 2" (k+2).
Let V =V(n), so that |[V| = 2" and n = log|V|. (All logarithms here are taken with base 2.)
Now let € = 2%, and let
ACV, Al >eg|V].

One obtains, after a little juggling,
m = loglog|V|—loglog(4/¢).

It is shown in [2] that under exactly these circumstances the subset A must contain an affine m-space.
Therefore a(m,27%) < n = 2"(k+2), as required. O

Remark 1. When ¢ is not 2%, one can still use Theorem 1 to get
a(m,e) < a(m,27%) <2"(k+2),

where

27k < g <2k,

Theorem 2. Form > 1,k > 1,
a(m,2F) <2"(k+2). )

Proof. This follows immediately from Theorem 1, since if V(n) is partitioned into 2* classes, then at

least one of these classes has density at least 2% That is, if
V(n)=CiU---UCx,

then for some i,
Cil > 274V (n)].

Hence a(m,2%) < a(m,27%) < 2"(k+2). O



Remark 2. If r is not 2%, then one obtains

a(m,r) < a(m,2%) < 2™(k+2)

where
2K << 2K,
Theorem 3.
a(m,1) =m, m2>1, (3)
a(l,r) =1+ log, r], r>1, )
a(2,2F —1) < 3k, k> 2, 5)
a(3,2k—1) <10k —2, k>3, (6)
a(3,3) < 15, a(4,3) < 55. (7)

Proof. Equalities (3) and (4) are obvious. Note that any 2-element suset of V (r) is an affine line in V (n).
Inequalities (5) and (6) are proved using the following method.
To prove (5), fix k > 2 and let
V(3k) =V (2k) x V (k)

be partitioned into 2% — 1 classes C;, 1 < i < 2K — 1. We need to show that some affine 2-space in V (3k)
is contained in some C;.
Lety € V(2k). Then {y} x V (k) is partitioned into 2¥ — 1 classes

(Y xVE))NC, 1<i<2k—1.
Since a(1,2% — 1) = k, there is an affine line

) cVk)

such that the affine line
P} x f(y) CV(3k)

is contained in some C;.

Now we partition V (2k) into (2F —1)? classes D(i, j), 1 <i<2k—1,1< j <2k —1, in the following
way. Let the distinct 1-dimensional vector subspaces of V (k) be denoted by S;, 1 < j < 2% — 1. Then the
element y of V(2k) belongs to the class D(i, j) if and only if {y} x f(y) C C; and f(y) is a translate of S;.

Since a(1,(2F —1)2) = 1+ [log, (2K — 1)?] = 2k, there is an affine line {y;,y>} contained in some
D(i, j). It follows that

i} x f) U {2} x f(2)

is an affine 2-space contained in C;. This proves (5).



The proof of (6) uses the same idea. Fix k > 3, and let
V(10k—2) =V (7k—2) x V(3k)

be partitioned into 2% — 1 classes C;, 1 <i < 2X¥—1. We need to show that some affine 3-space of
V(10k — 2) is contained in some C;.
Lety € V(7k —2); then {y} x V(3k) is partitioned into

(Y} xV(3Bk))NG, 1<i<2k-1.
Since a(2,2% — 1) < 3k, there is an affine 2-space

f(y) CV(3k)

such that the affine 2-space
{y} xf(y) cV(10k-2)

is contained in some C;.
Now we partition V (7k — 2) into (25 — 1)z classes D(i, j), 1 <i<2F—1,1 < j <t, where

_@¥-1E*-
T N@-)

is the number of 2-dimensional vector subspaces of V(3k), just as before: Let the 2-dimensional vector
subspaces of V(3k) be denoted by S;, 1 < j <t. Then the element y of V(7k — 2) belongs to the class
D(i, j) if and only if {y} x f(y) C C; and f(y) is a translate of S ;.

Now a(1, (28— 1)t) = 1+ [log,(2¥ — 1)f] = 7k — 2 (for this we need k > 3), and hence there is an

affine line {y;,y2} contained in some D(i, j). It follows that

i} x f) Uy} x f(2)

is an affine 3-space contained in C;. This proves (6).

The bounds in (7) are proved using the same method. O

Remark 3. If the method above is continued to a(4,2% — 1), a(5,2F — 1) and so on, the resulting bounds

are not as strong as those given by Theorem 2 (With the exception of a(4,3).)

3 Upper bounds for c(m,r) and ¢(m, )

For the definitions of ¢(m, r) and é(m, €), see Section 1.

Definition 1. A combinatorial m-space in V(n) is any set S (of 2™ elements of V(n)) which can be

described as follows. For some partition

{1,2,...,}1}:B()UB1U"'UBm,



where By may be empty but B; is not empty, 1 < j < m, and for some function f from By into >, S is
the set of all points (xj,...,x,) in V(n) such that

x; = f(i), fori€ By,

xi=xy, fori,i €B;,1<j<m.

A combinatorial 1-space is usually called a combinatorial line.
For example, withm =3,n =8, By = {1,2}, B = {3,4}, B, = {5}, B3 = {6,7,8}, f(1) = f(2) =1,
S is the 3-space

11 00 0 000 11 11 0 000
11 00 0 111 11 11 0 111
11 00 1 000 11 11 1 000
11 00 1 111 11 11 1 111

Withm=1,n=38, By ={1,2,3,4}, By = {5,6,7,8}, f(1) = f(4) = 1, £(2) = £(3) = 0, S is the line

10010000
10011111

Theorem 4. For eachr > 1,
c(l,r)=r.

Proof. IfV(r) =CyU---UC,, then some two of

000---0
100---0
111---1

belong to the same class B;. Hence ¢(1,r) < r.
LetV(r—1)=CyU---UC,_j, where for 0 <i<r—1,

r—1
C = {(xl,...,xrl) evir—-1): ij:i}.
j=1

Then no C; contains a combinatorial line, Hence c¢(1,r) > r. O

The proof of Theorem 5 below is similar to the proof of Theorem 3. The main part of the proof is

contained in the following Lemma.

Lemma 1. Letm > 1, r > 1, be given, and let t(m,r) be the number of distinct combinatorial m-spaces
contained in'V(c(m,r)). Then
cim+1,r) <r-t(m,r)+c(m,r).



Proof. For convenience write t = ¢(m,r) and s = c(m, r). Let
V(rt+s)=V(rt) xV(s)

be partitioned into r classes C;, 1 < i < r. To show that some combinatorial (m+ 1)-space in V(rt +3) is
contained in some C;, we proceed just as in the proof of Theorem 3.
For each y € V(rt), {y} x V(s) has been partitioned into classes

(MxV(E)NG, 1<i<r
and since s = ¢(m, r) there is a combinatorial m-space

) CV(s)

such that the combinatorial m-space

PInfly) cv(re+s)

is contained in some C;.

Now partition V (rt) into rt classes D(i, ), 1 <i<r, 1< j<t, by putting the element y of V(rr)
into the class D(i, j) if and only if {y} x f(y) C C; and f(y) = S;, where Sy,...,S; are the combinatorial
m-spaces in V (s).

Since ¢(1,rt) = rt, there is a combinatorial line {y;,y,} contained in some D(i, j), and therefore

i x f) U {2} x f(2)

is a combinatorial (m + 1)-space contained in C;. O

Lemma 2. The number of combinatorial m-spaces in V (s) is

1 & (m .
S (M mea-ir
Proof. Each combinatorial m-space in V () corresponds to an s-tuple on the m+2 symbols 0, 1, b1, ..., by,
in which each b;, 1 < j <m, occurs at least once. In the examples described after the Definition above,
the 3-space corresponds to 11b1b;byb3b3b3, and the 1-space (line) corresponds to 1001b1b1b1b;. Count-
ing by inclusion-exclusion gives the result. O

Theorem 5. Form =2, r > 1, we have
c(2,r)<r-(3"=2")+r<r-3".

In general, form> 2, r > 1,
S
c(m,r) <r-((m+ l)r)(m )



Proof. This is a crude estimate based on Lemmas 1 and 2. O
We now turn to upper bounds for the function ¢(m, €).

Theorem 6. Form>1,r> 1,

¢(m,1)=1;
&(1,1/r) < r2.

Proof. 1t is an easy consequence of Sperner’s lemma on families of pairwise incomparable subsets of a

set (see [4] for details) that if A is any subset of V(n) such that A contains no combinatorial line then

1= (7))

e " /2n.nel/(12n+l) <n!<n'e" /27171’16]/12”,

<[n72]> < \/Z‘\},;-Z”, n>1.

Hence if A C V(r?), |A| > (1/r)|V(r?)], then

|A|>12’2>\F Loy (r
~r T VP2 [r2/2])’

and therefore A contains a combinatorial line. O

Using

one obtains

Lemma 3. Form> 1, r > 1, let n=2(m,1/(r+1)) and let e be the number of distinct combinatorial
m-spaces contained in V (n). Then

cm+1,1/r) < n+rte’.
In particular, using Theorem 6 and Lemma 2,
5(27 1/7‘) < (r+ 1)2 +r4(3(r+1)2 _ 2(r+1)2)2.
Proof. Tt is shown in [3] that
am+1,1/r) <n+a(1,(Re)™).
Applying Theorem 6 gives the result. O

One can now apply Lemma 3 (and Lemma 2) repeatedly to get an explicit upper bound for ¢(m, 1/r).

One estimate obtained in this way is the following.
Theorem 7. Form>2,r > 1, lets = (r+m—1)* Then

@)
c(m, 1/r) < r*((m+1)")"



4 Remarks

Since Theorem | above is surely much stronger than Theorem 2, it should be possible to considerably
strengthen Theorem 2.

Replacing the two-element field [, by the three-element field F3 (or any larger field) leads to con-
siderable difficulties. Let a(m,r,q),... be the functions defined analogously to a(m,r),. .., where [F; is
replaced by the g-element field ;. (The definitions of affine m-space and combinatorial m-space remain
unchanged. Note, however, that the definition of a combinatorial m-space does not require a finite field,
but only a finite set.)

The existence of a(m,r,q) and c(m,r,q) follows from the Hales-Jewett theorem. The existence of
a(m, e, q) is known only for ¢ =2 and ¢ = 3 [2, 3], and the existence of ¢(m, €,¢) is not known even for
g = 3. R. L. Graham has offered a reward [4] for an answer to the question of the existence of ¢(1,€,3).

Following the methods used above to prove Theorems 3, 5, and 7, one could calculate upper bounds
for, say, a(m, r,3) and a(m, €,3), and c(m,r,3) in terms of upper bounds for the case m = 1. However, no
satisfactory upper bounds for a(1,r,3), a(1,¢,3), and ¢(1,r,3) have been found.

(It is trivial that a(1,1,3) = 1 and a(1,2,3) = 2. A recent calculation [1] shows that a(1,3,3) =4.)

Finally, we remark that by identifying V (n) with the set of subsets of {1,...,n} in the natural way,
the combinatorial m-spaces in V (n) become identified with collections of the form

{AOUUA,-:IC{I,...,n}},
iel

where Ap,Ay,...,A, are pairwise disjoint subsets of {1,...,n} and Ay,...,A,, are non-empty.
The functions c¢(m,r) and ¢(m, 1/r) can be interpreted from this point of view. Related bounds have
been found by Alan Taylor [8] for the case where A is empty and / is non-empty.

References

[1] T.C. Brown, Monochromatic affine lines in finite vector spaces, J. Combin. Theory Ser. A 38 (1985),
35-41.

[2] T.C. Brown and J.P. Buhler, A density version of a geometric Ramsey theorem, J. Combin. Theory
Ser. A 25 (1982), 20-34.

(3]

, Lines imply spaces in density Ramsey theory, J. Combin. Theory Ser. A 36 (1984), 214-220.
[4] Ron L. Graham, Rudiments of ramsey theory, Amer. Math. Soc., Providence, RI, 1981.

[5]1 Ronald L. Graham, Bruce L. Rothschild, and Joel H. Spencer, Ramsey theory, Wiley-Interscience
Series in Discrete Mathematics. A Wiley-Interscience Publication., John Wiley & Sons, Inc., New
York, 1980.

[6] Alfred W. Hales and Robert I. Jewett, Regularity and positional games, Trans. Amer. Math. Soc. 106
(1963), 222-239.



[71 E. Szemerédi, On sets of integers containing no k elements in an arithmetic progression, Acta. Arith.

27 (1975), 199-245, Collection of articles in memory of Jurii Vladimirovic Linnik.

[8]1 Alan D. Taylor, Bounds for the disjoint unions theorem, J. Combin. Theory Ser. A 30 (1981), 339-
344,



	Introduction and definitions
	Upper bounds for a(m,r) and (m,)
	Upper bounds for c(m,r) and (m,)
	Remarks

