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Abstract

A generalisation of the van der Waerden numbers w(k;r) is considered. For a function f : Z+!

R
+ define w(k; f ;r) to be the least positive integer (if it exists) such that for every r-coloring of

[1;w( f ;k;r)] there is a monochromatic arithmetic progression fa+ id : 0 � i � k� 1g such that d �

f (a). Upper and lower bounds are given for w( f ;3;2). For k > 3 or r > 2, particular functions f are

given such that w( f ;k;r) does not exist. More results are obtained for the case in which f is a constant

function.

1 Introduction

It was proved by wan der Waerden [10,11] that for arbitrary positive integers k and r, there exists a least
positive integer w(k;r) such that whenever the interval [1;w(k;r)] = f1;2; : : : ;w(k;r)g is r-colored, there
must be a monochromatic k-term arithmetic progression fa;a+d;a+2d; : : : ;a+(k�1)dg (in other
words, if [1;w(k;r)] is partitioned into r parts, then one part contains a k-term arithmetic progression).

In this paper, we shall consider a generalisation of w(k;r). Namely, let f be an arbitrary function
from the set of positive integers to the set of positive reals. We ask whether or not there exists a smallest
positive integer w( f ;k;r) such that whenever [1;w( f ;k;r)] is r-colored, there must exist a monochro-
matic k-term arithmetic progression fa;a+d;a+2d; : : : ;a+(k�1)dg, with d � f (a). For example, if
f (x) = x2 and k = 3, then we are interested in arithmetic progressions such as f2;6;10g, f2;7;12g and
f3;12;21g, but would ignore f2;3;4g, f2;4;6g f2;5;8g and f3;11;19g.

In Section 2, we consider w( f ;k;r) when f is a constant function. Section 3 deals with the more
general case of f : Z!R+. Section 4 includes a brief discussion of some related work that has been
done, as well as a few remarks and open questions.

We shall use the following terminology. For an arithmetic progression A= fa;a+d;a+2d; : : : ;a+(k�1)dg,
we call d the common difference of A. If f : Z!R+, and d � f (a), we say that A is an f -arithmetic pro-

gression. Thus, w( f ;k;r) is the least positive integer such that for every r-coloring of [1;w( f ;k;r)] there
is a k-term monochromatic f -arithmetic progression. If χ is a coloring (of some set of positive integers)
that yields no monochromatic k-term f -arithmetic progression, we say that χ is ( f ;k)-valid.
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To represent a particular r-coloring of an interval of size n, we shall often use a string of digits. For
example, the string 11000 could be used to denote the 2-coloring of [1;5], where the color of the first
two elements is 1 and the color of the last three elements is 0.

2 The Case in Which f is Constant

When f is the constant function c, we denote w( f ;k;r) by w(c;k;r). It is clear that w(1;k;r) = w(k;r)

and w(c1;k;r)� w(c2;k;r) whenever c1 � c2.
The existence of w(c;k;r) is well-known. By the following proposition, we see that it is always

bounded above by dce(w(k;r)�1)+1.

Proposition 1. Let c0 > 0, and let M = w(c0;k;r)< ∞. Then for all c � c0,

w(c;k;r)�
�

c
c0

�
(M�1)+1

Proof. Let j = dc=c0e. Every r-coloring of f1; j+1;2 j+1; : : : ;(M�1) j+1g yields a monochromatic
k-term arithmetic progression with common difference at least jc0 � c.

In [9] it was noted that w(c;3;2) = 8c+ 1. The fact that 8c+ 1 is an upper bound follows from
Proposition 1, since w(3;2) = 9. That 8c+ 1 is also a lower bound may be seen by considering the
coloring S1S2S1S2 where S1 is a string of 1’s having length 2c and S2 is a string of 0’s having length 2c.
We may generalise this coloring to obtain a lower bound for w(c;k;r). Namely, let λ (c;k;r) denote the
r-coloring λ :

�
1;cr(k�1)2

�!f0;1; : : : ;r�1g defined by the string

(B1B2 : : :Br)(B1B2 : : :Br) : : :(B1B2 : : :Br);

where for each i 2 f1; : : : ;r�1g, Bi is a string of i’s having length c9k�1), Br is a string of 0’s having
length c(k�1), and where there are (k�1) copies of the block (B1B2 : : :Br). For example, λ (3;3;2) =
111111000000111111000000.

By using λ (c;k;r) we have the following result.

Proposition 2. For all positive integers c;k;r with k;r � 2,

w(c;k;r)� cr(k�1)2 +1:

Proof. Let M = cr(k�1)2. It is clear that if we color [1;M] with the coloring λ (c;k;r), there will be no
monochromatic k-term arithmetic progression with common difference at least c.

We have run a computer program to calculate various values of w(c;k;r). In addition to giving the
value of w(c;k;r), the program also lists all the r-colorings of maximal length that avoid monochromatic
k-term arithmetic progressions with common difference at least c (that is, the (c;k)-valid r-colorings).
It is well-known that the (1,3)-valid 2-colorings of [1;8] are 11001100, 10100101, and 10011001, and,
of course, the three colorings obtained from these by reversing the roles of 0 and 1. Note that the first
of these colorings is the coloring λ (1;3;2) described above. The following theorem shows that for all
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c � 2, λ (c;3;2) is the only maximal length (c;3)-valid 2-coloring (assuming that 1 is assigned the color
1).

Before proceeding we adopt the following notation. We shall denote the following colorings of [1;8]
by the given symbols:

A = 11001100 A0 = 00110011 B = 10011001 B0 = 01100110
C = 10100101 C0 = 01011010:

We need the following two lemmas.

Lemma 3. Let c;k and m be positive integers, and let g be a (c;k)-valid 2-coloring of [1;mc]. Let

i 2 f1;2; : : : ;cg. Let g� be the coloring of [1;m] defined by g�( j) = g(( j�1)c+ i) for each j = 1; : : : ;m.

Then g� is (1;k)-valid on [1;m].

Proof. Assume g� is not (1;k)-valid. Then there is a g�-monochromatic arithmetic progression fa;a+

d; : : : ;a+(k� 1)dg � [1;m]. Then f(a� 1)c+ i;(a� 1+ d)c+ i; : : : ;(a� 1+(k� 1)d)c+ ig is a g-
monochromatic arithmetic progression, contained in [1;mc], having common difference of cd � c, con-
tradicting the fact that g is (c;k)-valid.

Lemma 4. If c� 3 and g is a (c;3)-valid 2-coloring of [1;8c] with g(c) = 1, then S = fc;2c; : : : ;8cg has

color pattern A = 11001100.

Proof. Define g� on [1;8] by g�( j) = g( jc). By Lemma 3, g� is (1,3)-valid. Hence, since g(c) = 1, as
noted earlier, g� has one of the color patterns A, B or C, so that S has one of these three color patterns.
To complete the proof, we show that S cannot have color pattern B or C.

We consider two cases.

Case I. c is odd. Let T = f1;c+1;2c+1; : : : ;7c+1g. By Lemma 3, the function g0 defined on [1;8]
by g0( j) = g(( j�1)c+1) has one of the six color patterns A, A0, B, B0, C, or C0; that is, under g, T has
one of these six color patterns.

First assume, by way of contradiction, that S has color pattern B.
If T has coloring A or C0, then we have g(c+1) = g(8c) = 1. Hence, g(4:5c+1=2) = 0 (for otherwise

g is not (c;3)-valid). This implies that f2c+1;4:5c+1=2;7cg is monochromatic under g, a contradiction.
The remaining possibilities for coloring T are B0 and C. For each of these cases, g(2c+1) = g(5c) =

1, so that g(8c�1) = 0. Then f4c+1;6c;8c�1g is monochromatic with common difference at least c,
a contradiction.

Now assume that S has color pattern C.
If T has any of the color patterns A, B0, or C, then g(3c) = g(5c+ 1) = 1, so that g(c� 1) = 0.

This implies that fc� 1;2c;3c+ 1g is monochromatic, which is not possible. If T has either of the
color patterns A0 or C0, then g(c) = g(6c+1) = 1, implying that g(3:5c+1=2) = 0; but then f2c;3:5c+

1=2;5c+1g is monochromatic, a contradiction. Finally, if T has color pattern B, the fact that g(4c+1) =
1 and g(6c+1) = 0 yields a contradiction in a similar fashion, by first looking at f2c�1;3c;4c+1g and
then f2c�1;4c;6c+1g.
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Case II. c is even. This is done in the same way as case I, but instead of using the set T , we use
U = f2;c+2;2c+2; : : : ;7c+2g. Since this is quite similar to case I, we do two subcases, and omit the
rest.

If S has color pattern B and U has color pattern A, then g(c+2) = g(8c) = 1, so g(4:5c+1) = 0; but
then f2c+2;4:5c+1;7cg is monochromatic, giving a contradiction.

If S has color pattern B and U has one of the colorings A0 or B, then g(4c) = g(7c+2) = 1, and hence
g(c�2) = 0 (note that c�2 > 0). Then fc�2;3c;5c+2g is monochromatic, which is not possible.

Theorem 5. Assume c � 2 and g is a 2-coloring of [1;8c] with g(1) = 1. If g is (c;3)-valid on [1;8c],

then g = λ (c;3;2).

Proof. For c = 2, one can check directly that 1111000011110000 is the only valid 2-coloring of [1;16]
such that 1 is given color 1.

Now let c � 3 and let g be a 2-coloring of [1;8c] such that g(c) = 1. It suffices to show that for each
i = 1;2; : : : ;c,

Ti = f( j�1)c+ i : 1 � j � 8g has color scheme 11001100. (1)

By Lemma 4, (1) holds for i = c. Now consider i 2 f1; : : : ;c�1g.
Let gi be the coloring of [1;8] defined by gi( j) = g(( j�1)c+ i). Then by Lemma 3, gi is (1,3)-valid

on [1,8]. Thus gi has one of the color patterns A, A0, B, B0, C, C0. Thus, it suffices to show that Ti does
not have any of the color patterns A, A0, B, B0, C, C0.

If Ti has one of the patterns A0, B, or C, then g(c+ i) = g(3c), which implies that f5c� i;6c;7c+ ig
is monochromatic, a contradiction.

If Ti has the pattern B0, then g(2c+ i) = g(5c), so that g(8c� i) = g(4c) = g(i), again a contradiction.
Finally, if Ti has pattern C0, then g(i) = g(4c) = 0. This implies that f3c+ i;5c;7c� ig is monochro-

matic, also impossible.

Although we do not have a result analogous to Theorem 5 for arithmetic progressions of length
greater than three, we do have some evidence that suggests a similar result may be true. Namely, we
have computed the values of w(c;4;2) for all c;1 � c � 12. In Table 1, we list these values. In the third
column of Table 1, we give the lower bound for w(c;4;2) as provided by Proposition 2.

We notice from Table 1, that as c increases from 1 to 6, the ratio of w(4;3;2) to the lower bound of
Proposition 2 decreases, and for each c, 6 � c � 12, these two values are equal. We have also found,
for each c in the table, all maximal length (c;4)-valid 2-colorings (that is, (c;4)-valid 2-colorings of
[1;w(c;4;2)�1]). For each c, 6 � c � 11, all maximal length (c;4)-valid 2-colorings have a rather
simple form that is quite similar to λ (c;4;2) (of course, by Proposition 2, one of these colorings is
λ (c;4;2)).

Based on Theorem 5 and the computer data for k = 4, we offer the following conjectures.
Let us first adopt the following notation: for c 2 Z+, denote by I1 and I0 a string of 1’s with length 3c

and a string of 0’s with length 3c, respectively. If c is even, denote by J1 and J0, monochromatic strings
of length (3=2)c�1 of 1’s and 0’s, respectively. Finally, if c is odd, denote by K1 and K0 strings of length
(3c�1)=2 of 1’s and 0’s, respectively.
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c w(c;4;2) lower bound
1 35 19
2 45 37
3 63 55
4 75 73
5 92 91
6 109 109
7 127 127
8 145 145
9 163 163
10 181 181
11 199 199
12 217 217

Table 1: Values of w(c;4;2)

Conjecture 1. Let c� 6 and let g be a (c;4)-valid 2-coloring of [1;18c], with g(1) = 1. If c is even, then

g is one of the colorings J1abJ1I0I1I0I1J0cdJ0, where a;b;c;d may be assigned any colors. If c is odd,

then g is one of the colorings K1uK1I0I1I0I1K0vK0, where u;v may be assigned any colors.

Note that if a = b = u = 1 and c = d = v = 0 in Conjecture 1, then the only valid colorings we
get are λ (c;4;2). Also, if Conjecture 1 is true, then there are exactly sixteen valid colorings of [1;18c]

if c is even, and four if c is odd (assuming g(1) = 1). Finally, note that Conjecture 1 would imply
w(c;4;2) = 18c + 1 for all c � 6, because none of the colorings described in the conjecture can be
extended to a (c;4)-valid 2-coloring of [1;18c+ 1] (it is true that w(c;4;2) = 18c+ 1 for all c that are
multiples of 6, by virtue of the fact that w(6;4;2)� 109 and Propositions 1 and 2).

Conjecture 2. For all k � 2, there is a least positive integer ck such that w(ck;k;2) = 2ck(k�1)2 +1.

By Table 1, the fact that w(3;2) = 9, and the trivial case of k = 2, we have that c2 = 1, c3 = 1, and
c4 = 6. Our hope is that for each k � 5 and c0k large enough, one could describe in a simple manner
all of the (c0k;k)-valid 2-colorings of

�
1;2ck(k�1)2

�
(as is the case, for example, with (c0k;k) = (2;3)

and (c0k;k) = (6;4)). Finding a reasonable upper bound for such a ck or c0k is most certainly a difficult
problem, since such an upper bound would yield an upper bound on the classical van der Waerden
numbers.

We note that the above discussion, and the conjectures, can be extended from two colors to r colors
in an obvious way. When r = 3, we have found that w(1;3;3) = 27, w(2;3;3) = 38, w(3;3;3) = 51,
w(4;3;3) = 67, but do not know any other values (a conjecture for k = r = 3 would be that for large
enough c, w(c;3;3) = 12c+1).

3 The General Case

In this section we consider the function w( f ;k;r) where f is a function from the positive integers to the
positive real numbers.

We begin with the simplest case, namely k = 2. To simplify the notation in this case, we assume that
f is a function from the positive integers to the positive integers. If g is a function, the symbol g(r) will
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denote the rth iterate of g.

Theorem 6. Let f : Z+ ! Z
+ be nondecreasing. Then w( f ;2;r) = g(r)(1), where g(x) = f (x)+ x.

Proof. To show that g(r)(1) serves as an upper bound, consider any r-coloring of
h
1;g(r)(1)

i
. Then there

must be two members of the set f1;g(1);g(2)(1); : : : ;g(r)(1)gwith the same color, say g(i)(1) and g( j)(1),
where 0 � i < j � r. Since

g( j)(1)�g(i)(1)� g(i+1)(1)�g(i)(1) = f (g(i)(1));

there is a monochromatic 2-term f -arithmetic progression.
To complete the proof we give an r-coloring χ of

h
1;g(r)(1)�1

i
under which there is no monochro-

matic 2-term f -arithmetic progression. Namely, for i = 1; : : : ;r, let Ai = [g(i�1)(1);g(i)(1)� 1], and
let χ(Ai) = i. Now, for each i, no two members of Ai differ by more than f (g(i)(1))� 1. Since f is
non-decreasing, there do not exist a;b 2 Ai with b�a > f (a)�1.

We now consider w( f ;3;2). We give two proofs of the fact that w( f ;3;2) exists. The first is a simple
argument that merely shows the existence of this number. The second proof, under the assumption that
f is non-decreasing, gives an upper bound on w( f ;3;2).

Theorem 7. Let f be arbitrary function from Z
+ to R+. Then w( f ;3;2) exists.

Proof. Let us assume without loss of generality that f is non-decreasing. We show that every 2-coloring
of Z+ produces a progression of the desired type. By the compactness principle, the result follows.

Let g be a 2-coloring of Z+. We identify g with the binary sequence g(1)g(2)g(3) : : :. If this sequence
does not contain infinitely many 001’s (that is g(y) = 0, g(y+ 1) = 0, g(y+ 2) = 1 for infinitely many
y’s) or infinitely many 110’s, then the sequence has a tail consisting of 000. . . or 111. . . or 101010. . . ,
and the result follows immediately.

Assume that 001 occurs infinitely often. Choose two occurrences, say g(x) = 0, g(x+1) = 0, g(x+

2) = 1, and g(x+d) = 0, g(x+d +1) = 0, g(x+d +2) = 1, where d � f (x+2).
If g(x+2d+2) = 1, then fx+2;x+d+2;x+2d+dg is the desired progression. If g(x+2d+2) = 0,

then fx;x+d +1;x+2d +2g is the desired progression.

The second proof we give of Theorem 7 uses the following two lemmas.

Lemma 8. Let f be a non-decreasing function from Z
+ to R+. Let a� 1, e� 1, d � 3e+ f (a+4e), and

n� a+2d. Assume that g is a 2-coloring of [1;n] such that there does not exist a monochromatic 3-term

f -arithmetic progression. Assume that g(a) = 0, g(a+ 2e) = 1, and g(a+ 4e) = 0. Then g(a+ d) =

g(a+d + e).

Proof. There are two cases, depending on the color of a+d.
Suppose first that g(a+ d) = 0. Then g(a+ 2d) = 1, since otherwise the f -arithmetic progression

fa;a+d;a+2dg would be monochromatic. Since g(a+2e) = g(a+2d +2(d� e)) = 1, we must have
g(a+d+e) = 0, for otherwise the f -arithmetic progression fa+2e;a+2e+(d�e);a+2e+2(d�e)g
would be monochromatic.
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Suppose next that g(a+ d) = 1. Then g(a+ 2d � 2e) = 0, since otherwise fa+ 2e;a+ 2e+(d �
2e);a+ 2e+ 2(d� e)g would be a monochromatic f -arithmetic progression. Since now g(a+ 4e) = 0
and g(a+4e+2(d�3e)) = 0, we must have g(a+d+e) = 1, for otherwise the f -arithmetic progression
fa+4e;a+4e+(d�3e);a+4e+2(d�3e)g would be monochromatic.

Lemma 9. Let f be a non-decreasing function from Z
+ to R+. Let a;e and q be positive integers and

let d � 3e+ f (a+ 4e) and n � a+ 2(d + qe). Assume that g is an ( f ;3)-valid 2-coloring of [1;n]. If

g(a) = 0, g(a+2e) = 1, and g(a+4e) = 0, then the set fa+d + ie : 0 � i � q+1g is monochromatic.

Proof. Lemma 8 gives g(a+ d) = g(a+ d + e). Replacing d by d + e, and applying Lemma 8 again,
gives g(a+d +e) = g(a+d +2e). We repeat this until the desired monochromatic sets is obtained.

Theorem 7. (Stronger version.) Let f be a non-decreasing function from Z
+ to R+. Let b = 1 +

4d f (1)=2e. Then

w( f ;3;2)�
�

4 f
�

b+4
�

f (b)
2

��
+14

�
f (b)

2

�
+7b=2�13=2

�
: (2)

Proof. Let p = d f (1)=2e and s = d f (b)=2e. Now let g be any 2-coloring of [1;n] where n represents the
right-hand side of (2). Assume that g is ( f ;3)-valid. We shall obtain a contradiction by means of Lemma
9.

Without loss of generality, assume that g(1) = 0. The proof is divided into three cases.

Case 1. g(1+4p) = 0. Since f1;1+2p;1+4pg is an f -arithmetic progression, we must have g(1+
2p) = 1. Now choose t 2 Z+ so that

4p+ f (1+4p)�1 � t p � 3p+ f (1+4p)

Then

n � 4 f (1+4p+4s)+14(p+ s)�3

> 4 f (1+4p)+14p�3

= 1+4(4p+ f (1+4p)�1)�2p

� 1+4t p�2p

= 1+2(t p+(t�1)p):

We now apply Lemma 9 with a = 1, e = p, d = t p, and q = t�1, and conclude that the set f1+ t p+

ip : 0� i� tg is monochromatic. In particular, 1+ t p, 1+(pt�2)p, and 1+2t p all have the same color.
If g(1+t p)= 0, then f1;1+t p;1+2t pg is a monochromatic f -arithmetic progression. If g(1+t p)=

1, then f1+ 2p;1+ 2p+ (t � 2)p;1+ 2p+ 2(t � 2)pg is a monochromatic f -arithmetic progression.
These contradictions finish Case 1.

Case 2. g(1+4p) = 1 and g(1+4p+4s) = 0. Since f1;1+2(p+ s);1+4(p+ s)g is an f -arithmetic
progression, we must have g(1+ 2(p+ s)) = 1. We shall apply Lemma 9 using g(1) = 0, g(1+ 2(p+
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s)) = 1, and g(1+4(p+ s)) = 0.
Define t to be the positive integer such that

4(p+ s)+ f (1+4p+4s)�1 � t(p+ s)� 3(p+ s)+ f (1+4p+4s):

Then

n � 4 f (1+4p+4s)+14(p+ s)�3

= 1+4(4(p+ s)+ f (1+4p+4s)�1)�2(p+ s)

� 1+4t(p+ s)�2(p+ s)

= 1+2(t(p+ s)+(t�1)(p+ s)):

Hence Lemma 9 applies with a = 1, e = p+ s, d = t(p+ s), and q = t � 1, and we conclude that
f1+ t(p+ s)+ i(p+ s) : 0� i� tg is monochromatic. In particular 1+ t(p+ s), 1+(2t�2)(p+ s), and
1+2t(p+ s) all have the same color.

If g(1+ t(p+ s)) = 0, then f1;1+ t(p+ s);1+2t(p+ s)g is a monochromatic f -arithmetic progres-
sion. If g(1+t(p+s))= 1, then f1+2(p+s);1+2(p+s)+(t�2)(p+s);1+2(p+s)+2(t�2)(p+s)g
is a monochromatic f -arithmetic progression. In either case, we again have a contradiction.

Case 3. g(1+4p) = 1, g(1+4p+4s) = 1. Since f1+4p;1+4p+2s;1+4p+4sg is an f -arithmetic
progression, we must have g(1+4p+2s) = 0. Define t to be the integer such that

4s+ f (1+4p+4s)�1 � ta � 3s+ f (1+4p+4s):

Then

n > 1+4(4s+ f (1+4p+4s)�1)�2a

� 1+4ts�2s

= 1+2(ts+(t�1)s):

Hence Lemma 9 applies (with the colors reversed) with a = 1+4p, e+ s, d = ts and q = t�1, and
we conclude that the set f1+ 4p+ ts+ is : 0 � i � tg is monochromatic. In particular, 1+ 4p+ ts;1+
4p+(2t�2)s, and 1+4p+2ts have the same color.

If g(a+4p+ ts) = 1, then f1+4p;1+4p+ ts;1+4p+2tsg is a monochromatic f -arithmetic pro-
gression. If g(a+ 4p+ ts) = 0, then f1+ 4p+ 2s;1+ 4p+ 2s+(t � 2)s;1+ 4p+ 2s+ 2(t � 2)sg is a
monochromatic f -arithmetic progression. These contradictions finish Case 3 and the proof of the theo-
rem.

The next result gives a lower bound for w( f ;3;2). To simplify the notation, we again assume that f

is a function from the positive integers to the positive integers.

Theorem 10. Let f be a non-decreasing function from Z
+ to Z+ with f (n) � n for all n 2 Z+. Let

h = 2 f (1)+1. Then w( f ;3;2)� 8 f (h)+2h+2� c, where c is the largest integer such that f (c)+ c �
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4 f (h)+h+1.

Proof. Let M = 8 f (h)+2h+1�c. We shall give a 2-coloring of [1;M] for which there is no monochro-
matic 3-term f -arithmetic progression; the existence of the coloring proves the theorem.

Let A1 = [1;h�1], A2 = [h;2 f (h)+h�1], A3 = [2 f (h)+h;4 f (h)+h], and A4 = [4 f (h)+h+1;M].
Define χ : [1;M]!f0;1g by χ(A1[A3) = 1 and χ(A2[A4) = 0.

Assume that X = fx1;x2;x3g is an f -arithmetic progression in [1;M] that is monochromatic under
χ . Say x2� x1 = x3� x2 = d � f (x1). Using the fact that χ(x1) = χ(x2), we split the proof up into six
cases, each of which gives a contradiction.

Case 1. x1;x2 2 A1. Then since f (1) � d � h� 2, we have 1+ 2 f (1) � x3 � 2h� 3. Thus x 2 A2,
contradicting the fact that X is monochromatic.

Case 2. x1 2 A1;x2 2 A3. Then d � 2 f (h) + 1, and hence x3 � 4 f (h) + h+ 1. This again implies
χ(x3) = 0, a contradiction.

Case 3. x1;x2 2 A3. Then

x3 � x1 +2 f (x1)� 2 f (h)+h+2 f (2 f (h)+h)� 4 f (h)+h+1;

so that χ(x3) = 0.

Case 4. x1;x2 2 A2. In this case, d � 2 f (h)� 1, and therefore x3 � x2 + 2 f (h)� 1 � 4 f (h)+ h� 2.
Also, x3 � x1 +2 f (x1)� h+2 f (h). Thus, x3 2 A3, a contradiction.

Case 5. x1 2 A2, x2 2 A4. Then d � 4 f (h) + h + 1� x1, and therefore x3 � 8 f (h) + 2h + 2� x1.
Therefore, x1 � c+1. Hence,

x3 � x1 +2 f (x1)� c+1+2 f (c+1)> 4 f (h)+h+1+ f (c+1)> 8 f (h)+2h+2� (c+1) = M;

a contradiction.

Case 6. x1;x2 2 A4. Then
x3 � x1 +2 f 9x1)� 2x1 > M;

which is impossible.

As one example of the upper and lower bounds given by Theorems 7 and 10, for m � 4 an even
integer, we have 16m2 +4m+6 � w(mx;3;2)� 16m3 +30m2 +18m�3 (the case for odd m is slightly
different).

We have also computed the exact values of w( f ;3;2) for some functions f . We found the following:
w(x;3;2) = 24, w(x+1;3;2) = 46, w(x+2;3;2) = 67, w(x+3;3;2) = 89, w(x+4;3;2) = 110, w(x+

5;3;2) = 132, w(2x;3;2) = 77, and w(2x+ 1;3;2) = 114. In all of these examples, the lower bound
of Theorem 10 agrees precisely with the computed value. We wonder if the bound of Theorem 10
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is the actual value of w( f ;3;2) for all linear f . It is not true for general f , as we have found that
w(x2;3;2)� 115, while the bound provided by Theorem 10 is 77.

For the case in which f (x) = x+ c, we have the following fairly close bounds on w( f ;3;2).

Theorem 11. Let c be a non-negative integer. Then

21:5c+24+δ � w(x+ c;3;2)� 23c+24;

where δ = 0 if c = 0, and δ = 1=2 if c is odd.

Proof. The lower bound is an immediate consequence of Theorem 10.
For the upper bound, let g be any 2-coloring of [1;23c+ 24]. Let g0 be the coloring of [1;24] de-

fined by g0(i) = g((c+ 1)(i� 1)+ 1). Since (as noted earlier) w(x;3;2) = 24, under g0 there must be a
monochromatic arithmetic progression fa;a+ d;a+ 2dg with d � a. Therefore A = f(c+ 1)(a� 1)+
1;(c+ 1)(a+ d � 1)+ 1;(c+ 1)(a+ 2d � 1)+ 1g is an arithmetic progression that is monochromatic
under g and has common difference that is no less than (c+ 1)a = (c+ 1)(a� 1)+ 1+ c. Thus, A is a
monochromatic f -arithmetic progression where f (x) = x+ c.

Remark. By the same method used in the proof of Theorem 11, one can show that w(bx+bc;3;2)�
(w(bx;3;2)� 1)c+w(bx;3;2). Thus, for example, since w(2x;3;2) = 77 we have w(2x+ 2c;3;2) �
76c+77.

Given the above results which pertain to arithmetic progressions of length three, it may seem surpris-
ing that w( f ;4;2) does not exist for all f . In fact we have the following stronger and more general result,
which shows that if k > 3 or r > 2, then there is a linear function f such that w( f ;k;r) does not exist.

Theorem 12. Let k � 3 and r � 2. If k > 3 or r > 2, then w(cx;k;r) does not exist, where

c =

 
21=(r�1)�1

k�1

!
:

Proof. Assume k > 3 or r > 2. Let v = 21=(r�1) and define the coloring g, which uses the colors
0,1,. . . ,r�1 by: g(x) = i (mod r) if vi � x < vi+1, for all i � 0.

Assume that fa;a+d;a+2d; : : : ;a+(k�1)dg is monochromatic, and that vi � a+d < vi+1. Then
d < vi+1, and a+2d < 2vi+1 = vi+r. Since g(a+2d) = g(a+d), this implies vi � a+d < a+2d < vi+1.
Next, a+ 3d = (a+ 2d) + d < 2vi+1 = vi+r. Since g(a+ 3d) = g(a+ d), this implies vi � a+ d <

a+3d < vi+1. Similarly, a+4d; : : : ;a+(k�1)d are all less than vi+1.
We now have vi � a+d < a+(k�1)d < vi+1, so that d < (vi+1� vi)=(k�2) and

a � vi�d > vi
�

1� v�1
k�2

�
� vi

2
= vi�(r�1):

Since g(a) = g(a+d), it follows that a > vi.
Finally, we have vi � a < a+(k�1)d < vi+1, so

d <
1

k�1
(vi+1� ki) = cvi � ca:
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Hence w(cx;k;r) does not exist.

For k;r � 2, let A(k;r) = fc > 0 : w(cx;k;r) existsg. Then by Theorems 6 and 7, A(2;r) = A(3;2) =
(0;∞). According to Theorem 12, for all other choices of k and r, A(k;r) is bounded. The following
result shows that A(k;r) is never empty.

Theorem 13. For all k and r, w(x=(w(k;r)�k+1);k;r) = w(k;r), where w(k;r) is the ordinary van der

Waerden function.

Proof. If fa;a+d; : : : ;a+(k�1)dg is a monochromatic arithmetic progression contained in [1;w(k;r)],
then a � w(k;r)� k+1, so d � 1 � a=(w(k;r)� k+1).

By Theorems 12 and 13, for all k� 3, r � 2, such that either k > 3 or r > 2, the set A(k;r) is bounded
and non-empty, and we define β (k;r)= supA(k;r). Clearly, A(k;r)= (0;β (k;r)) or A(k;r)= (0;β (k;r)].

Theorem 12 shows that β (k;2)� 1=(k�1) for all k � 4. For r = 2, Theorem 12 is strengthened by
the following result.

Theorem 14. If k � 4, then w(x=(k2�4k+3);k;2) does not exist.

Proof. Let q = k2�4k+3. Let A0 = [a0;b0] = [1;k�1], and for i � 1, let Ai = [ai;bi], where

ai = bi�1 +1 and bi = bi�1 +(k�1)
�

bi�1 +1
q

�
: (3)

Now 2-color Z+ with the coloring g defined by g(Ai) = 1 if i is even and g(Ai) = 0 if i is odd. We
shall show, by contradiction, that g is (x=q;k)-valid.

Assume g is not (x=q;k)-valid. Then there is a monochromatic arithmetic progression X = fx1; : : : ;xkg
with d = x j � x j�1 � x1=q for j = 2; : : : ;k. Let m be the largest integer such that X \Am is not empty.
Note that X 6� Am, since if x1 2 Am, then

xk = x1 +(x�1)d � bm�1 +1+(k�1)
�

x1

q

�

� bm�1 +1+(k�1)
�

bm�1 +1
q

�

> bm:

To complete the proof we shall obtain a contradiction by showing:

(i) at most two members of X belong to Am.

(ii) at most k�3 members of X do not belong to Am.

Since not all of X belongs to Am, by the way g and m are defined we know there is some j > 1 such that
x j 2 Am and x j�1 2 Ai, with h � m�2. Hence

d � jAm�1j+1 � (k�1)y+1 where y =

�
bm�2 +1

q

�
(4)
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To obtain (i), we prove that am +2d > bm. To prove this, by (3) and (4) it suffices to show that

bm�1 +1+2((k�1)y+1)> bm�1 +(k�1)
�

bm�1 +1
q

�
;

that is, that

3+2(k�1)y > (k�1)
�

bm�2 +(k�1)y+1
q

�
:

We see that this last inequality is true, since the right-hand side is less than (k�1)(y+(k�1)y=q).
To establish (ii), we shall show that x j�1� (k�3)d � 0. By (4),

(k�3)d � (k�1)
�
(k�1)

�
bm�2 +1

q

��

� (
p

q+1�1)(
p

q+1+1)
bm�2

q

= bm�2

� x j�1:

We have computed w(x=4;4;2) = 134, so that β (4;2) � 1=4. Using this fact, and the facts that
w(3;3) = 27 and w(3;4) = 76, along with Theorems 12–14, we summarise what we know about β (k;r)

in the following statement.

Corollary 15. Let k � 3. Then

(i) 1=4 � β (4;2)� 1=3

(ii) 1=25 � β (3;3)� (
p

2�1)=2

(iii) 1=74 � β (3;4)� ( 3p2�1)=2

(iv) For k � 5, 1=(w(k;2)� k+1)� β (k;2)� 1=(k2�4k+3)

(v) For r > 2, 1=(w(k;r)� k+1)� β (k;r)� (21=(r�1)�1)=(k�1).

Since, by Theorem 12, for each fixed c � 3, w(x=3;k;2) does not exist when k � c+1, one wonders
if there are any functions f (k) such that f (x)! ∞ as x ! ∞ and w( f ;k;2) exists for all k. One such
function is given by the next theorem.

Theorem 16. For each r � 2, there is a function f (x) such that f (x)! ∞ as x! ∞ and w( f ;k;r) exists

for all k.

Proof. We construct such a function f (x) for the case r = 2. The case of more colors can be handled
in exactly the same way. Let w(k;2) denote the ordinary van der Waerden function for two colors. Let
B2;B3; : : : ;Bk; : : :, be consecutive blocks of integers, where B2 = [1;6], B3 = [7;33], and, in general,
jBkj = kw(k;2). So B2 has length 2 � 3, B3 has length 3 � 9, B4 has length 4 � 35, et cetera. Define the
function f (x) by f (x) = k when x belongs to the block Bk. Then f (x) goes to infinity.
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Also, w( f ;k;2) � n = 2w(2;2)+ 3w(3;2)+ 4w(4;2)+ � � �+ kw(k;2), for if [1;n] is 2-colored, then
Bk has been 2-colored. Since jBkj= kw(k;2), Bk contains w(k;2) consecutive multiples of k. Hence there
is a monochromatic k-term arithmetic progression fa+ id : 0� i� (k�1)g in Bk consisting of multiples
of k; hence d � k = f (a).

4 Concluding Remarks and Questions

Analogs of van der Waerden’s theorem, where other restrictions are placed on the type of arithmetic
progression which is allowed, have been considered in earlier papers.

In [1, 4, 7], it is shown that in order to guarantee monochromatic arithmetic progressions fa;a+

d; : : : ;a+(k�1)dg, one cannot require d or a to be too small as a function of k.
In [2] it is shown that every 2-coloring of Z+ produces, for every k, a monochromatic k-term arith-

metic progression where one can require the common difference to be a perfect square, or to be a perfect
cube, or to have the form g(z), where g is any specified polynomial satisfying some mild conditions (see
also [6]). For extensions of this, see the excellent survey paper [3].

In [5], general properties of the set A are studied, where A is any set of positive integers such that
every r-coloring of Z+ produces, for every k, a monochromatic k-term arithmetic progression whose
common difference is an element of A. The question of determining the existence of the associated van
der Warden-type function and its value, for a given small finite set A, and given k, is considered in [8].

We conclude with some open questions.

1. By Proposition 1 and the coloring λ (c;k;2), we know that if w(c0;k;2) = 2c0(k� 1)2 + 1 and
j 2 Z+, then w( jc0;k;2) = 2 jc0(k� 1)2 + 1. Based on what is true when k = 3 and on Table 1,
we wonder if the following stronger statement holds: if w(c0;k;2) = 2c0(k� 1)2 + 1 and c � c0,
then w(c;k;2) = 2c(k�1)2 +1.

2. Theorem 14 suggests questions such as: does w(x=2k;k;2) exist for all large k? Is it true that for
all large k, the fastest growing function f such that w( f ;k;2) grows like x=k2?

3. It would be interesting to know the exact values, or have tighter bounds than those of Corollary
15, for β (4;2) and β (3;3). We have found a 3-coloring of [1;534] that is (x=5;3)-valid, so that
w(x=5;3;3)� 535. Since w(3;3) = 27 is so small in comparison, we suspect that w(x=5;3;3) does
not exist, which, if true, would give 1=25 � β (3;3)� 1=5.

4. The function of Theorem 16 is apparently a very slowly growing function. We wonder if there are
any faster growing functions f , such that, for fixed r, w( f ;k;r) exists for all k.

5. Another generalisation of a 3-term arithmetic progression is a set of the form fx;ax+d;bx+2d,
where x;a;b;d 2 Z+. For each pair a;b, we can define F(a;b) to be the least positive integer
(if it exists) such that for all 2-colorings of [1; f (a;b)] there is a monochromatic set of this type.
Notice that for any case in which b = 2a� 1, the collection of sets of this type is exactly the
set of arithmetic progressions fx1;x2;x3g with common difference at least (a� 1)x1 + 1. Thus,
F(a;2a� 1) = w((a� 1)x + 1;3;2), and hence by Theorems 7 (strong form) and Theorem 10
we have upper and lower bounds for F(a;2a� 1). In particular, for a even, 16a2 � 12a+ 6 �
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F(a;2a� 1) � 16a3 � 2a2 + 4a� 3. We have calculated that F(2;3) = 46 and F(3;5) = 114,
coinciding with the lower bound. We would like to know about F(a;b) if b 6= 2a� 1 (it is very
easy to show that F(a;2a) does not exist, but we do not know about other cases).
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