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1 Introduction

Let B(k;m;n) denote the semigroup generated by k elements and satisfying the identity xm = xn, where
0� m < n. That is, B(k;m;n) is the free semigroup on k generators in the variety of semigroups defined
by the law xm = xn (we are following the notation of Lallement [7]).

Green and Rees [6] showed that for each n � 1, the semigroups B(k;1;n) are finite for all k � 1 if
and only if the groups B(k;0;n� 1) are finite for all k � 1. Thus in particular all semigroups in which
x = x2 are locally finite, and so are all semigroups in which x = x3. The word problem for semigroups in
which x = x3 was solved by Gerhard [5].

The existence of an infinite sequence on 3 symbols in which there are no two consecutive indentical
blocks shows that B(3;2;3) is infinite, since the left factors of such a sequence will all be distinct modulo
the law x2 = x3. This was first observed by Morse and Hedlund [9], who constructed such a sequence.
An earlier construction of such a sequence was given by Thue [11], and other constructions appear in
Dean [3], Dejean [4], and Leech [8].

It is much more difficult to show that B(2;2;3) is infinite. This was done by Brzozowski, Culik II,
and Gabrielian [2], and is also described in Lallement [7]. It follows that B(k;m;n) is infinite for all
k � 2, n > m� 2, since B(k;2;3) is a quotient of B(k;m;n).

It was shown in [1] that S = B(k;2;3) is the disjoint union of locally finite subsemigroups. Specifi-
cally, for each idempotent e = e2 in S, let Se = fx 2 S : x2 = eg. Then S is the union of the locally finite
subsemigroups Se.

It has been asserted [10] that each Se is in fact a finite subsemigroup of S. As far as the author knows,
no proof of this assertion has been published. One possible approach of such a proof would be to show
that if x is any element of S and g is any generator of S, no too much ’cancellation’ can occur in the
product gx.

To make this precise, for each x in S let jxj denote the length of x, that is, the smallest integer p such
that x can be written as the product of p (not necessarily distinct) generators of S.

Then if there exists a constant c > 0 such that jgxj � cjxj for every generator g of S and every element
x of S, it would follow that Se is finite, for if jej = t and x 2 Se, then e = ex, so t = jexj � ct jxj, which
bounds the length of x.
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What could be the largest possible numerical value of such a constant c? This is the subject of the
present note.

2 An Upper Bound for the Constant c

Since the value of c depends on k, the number of generators of S, we make the following definition.

Definition. Let g1;g2; : : : ;gk; : : : ; be a sequence so that for each k� 1, g1;g2; : : : ;gk is a set of generators
for the semigroup Bk = B(k;2;3), and let Bω = B1 [B2 [ �� � . For each k � 1, let ck be the largest real
number such that for all x 2 Bk and all i, 1 � i � k, jgixj � ckjxj. Similarly, let cω be the largest real
number such that for all x 2 Bω and all i� 1, jgixj � cω jxj.

Note that if Ck is the set of all real numbers c such that jgixj � cjxj for 1 � i � k and x 2 Bk, then
ck = supCk = maxCk.

Since 2 = jg1(g1)
2j � c1j(g1)

2j = 2c1, we have 1 = c1, and since Bω � Bk+1 � Bk, we have ck �
ck+1 � cω , so that

1 = c1 � c2 � �� � � ck � ck+1 � �� � � cω � 0:

It is easy to see that 2=3 � cω . For let A = g2g3 � � �gp nd x = Ag1Ag1A. Then jxj = 3p� 1 and
jg1xj= jg1Ag1Aj= 2p, so that for all p� 2,

�
2
3
+

2
9p�3

�
jxj= jg1xj � cω jxj:

We will improve the bound of 2=3 to (
p

5�1)=2� :618 by finding, for each ε > 0, elements x;y in
Bω so that

jg1xy2j �
 p

5�1
2

+ ε

!
jxy2j:

For this we need the following two lemmas.

Lemma 1. Let a;b;c 2 Bω , where the generator g1 does not occur in any of a;b;c. Then jag1bg1j =
jaj+ jbj+2, and (unless a = b = c) jag1bg1cg1j= jaj+ jbj+ jcj+3.

Proof. For words X ;Y in the alphabet fg1;g2;g3; : : :g, let us say that X is equivalent to Y , and write X �
Y , in case X can be transformed into Y by means of a finite sequence of ’expansions’ UW 2V !UW 3V

and ’contractions’ UW 3V !UW 2V , where U;W;V are any words, possibly empty.
To prove the first equality of the lemma, suppose that Ag1Bg1C = X � Y = Eg1Fg1G, where the

letter g1 does not occur in any of the words A;B;E;F . (At this point we need not assume that g1 does
not occur in C or G; reading X from left to right, the word A is the segment of X which precedes the first
occurrence of g1, and the words B;E;F are similarly characterized.) We will show that A� E and B� F .
It suffices to consider the case where X = Ag1Bg1C =UW 2V;UW 3V = Eg1Fg1G = Y . By considering
the several possible locations of W 2 in X (and noting that W 2 contains at least two g1s if it contains one),
one sees easily that A� E and B� F . The fact that jag1bg1j= jaj+ jbj+2 now follows easily.

For the second equality of the lemma, we need to use also that ’right-handed’ version of the pre-
ceding, namely that if Ag1Bg1C � Eg1Fg1G, where the letter g1 does not occur in any of the words
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B;C;F;G, then B � F and C � G. Then, if the shortest product of generators which equals ag1bg1cg1

contains at least three g1s, it contains only three g1s, and jag1bg1cg1j= jaj+ jbj+ jcj+3. If the shortest
such product contains only two g1s, then it is not hard to see that a = b = c.

Lemma 2. Define elements xn;yn in Bω for all n� 2 inductively as follows. Let x2 = g2, y2 = g1g2. For

n � 2, let xn+1 = xnyngn+1, yn+1 = xny2
ngn+1. Then for n � 2, jg1xn+1yn+1j = jg1xnynj+ jxny2

nj+ 2 and

jxn+1y2
n+1j= jxnynj+2jxny2

nj+3.

Proof. This follows from Lemma 1, with the gn+1 in Lemma 2 playing the role of g1 in Lemma 1. One
needs to know that xn+1 6= yn+1. But if xn+1 = yn+1, then xnyn = xny2

n, and this implies (by Lemma 1)
that xn�1yn�1 = xn�1y2

n�1.

Proposition. Let τ denote the golden mean, τ = (1+
p

5)=2� 1:618. Then τ�1� cω .

Proof. In our calculation, we will make use of the Fibonacci numbers Fn, where F0 = F1 = 1 and Fn+2 =

Fn+1+Fn, and the fact that Fn=Fn+1 converges to 1=τ .
For n � 2, let xn;yn be defined as in Lemma 2. Then by induction it follows that for all n � 2,

g1xny2
n = g1xnyn. By Lemma 2 and induction it follows that for all n � 2, jg1xnynj = F2n�3 +F2n�1,

jxny2
nj= F2n�2+F2n�2.
Then for all n� 2,

cω � jg1xny2
nj

jxny2
nj

=
jg1xnynj
jxny2

nj
=

F2n�3+F2n�1

F2n�2+F2n�2
! 1=τ = τ�1;

and it follows that cω � τ�1.

3 An Open Question

It would be interesting to know the exact values of c2 and cω , and inparticular whether c2 > 0, and
whether cω > 0.
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