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Abstract

Some generalizations of arithmetic progressions are: quasi-progressions, combinatorial progres-

sions, semi-progressions, and descending waves. (The definitions are given below.) We study the

occurrence of these progressions in the set of squares of integers.

1 Introduction

It is well known that there is no four-term arithmetic progression (AP) consisting of squares. We have
not found a really lucid demonstration of this fact (first proved by Fermat), but one can work through the
proof in Chapter 4 of [3]. However, three-term arithmetic progressions occur in abundance among the
squares: take any Pythagorean triple, a2+b2 = c2; then (b�a)2;c2;(b+a)2 is clearly a 3-term AP with
common difference 2ab. It’s also easy to show that every 3-term AP of squares has this form.

In [1] and [2] several generalizations of arithmetic progressions have been introduced and their prop-
erties investigated. For instance, since (n+ 1)2=n2 ! 1, Corollary 4, page 94 of [1] shows that the set
of squares contains arbitrarily long descending waves. A descending wave is a set fa1;a2; : : : ;ang such
that a j+1�a j � a j+1�a j+1, 1� j � n�2.

Thus the problems concerning the existence of long progressions in the set of squares is completely
solved for APs and descending waves.

For other types of progressions studied in the above mentioned papers (quasi-progressions (QP),
combinatorial progressions (CP) and semi-progressions (SP)) very little is known about the existence or
non-existence of long progressions of these types among the squares.

In this note we relate what we have found regarding APs, QPs, CPs and SPs occurring in the set of
squares. We give the definitions as we go along, and we use some notation consistent with [1] and [2].
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2 Arithmetic Progressions and Combinatorial Progressions

In Theorem 2.1 below, an n-CP
� n�1

2

�
is a set fb1;b2; : : : ;bng such that jfb2 � b1;b3 � b2; : : : ;bn �

bn�1gj � (n�1)=2.
Consider the sequence fang= f1;5;7;13;17;25; : : :g where an is defined by

an =

(
(n+1)2

�2
2 ; if n is odd

(n+1)2+1
2 ; if n is even

A simple calculation shows that, if n is odd, then (an)
2, (an+1)

2, (an+2)
2 is a 3-term AP of squares

with common difference = (n+ 1)(n+ 2)(n+ 3). Using this we get the following result concerning
combinatorial progressions.

Theorem 2.1. For each odd n� 1 there exists an n-CP
� n�1

2

�
among the squares.

Proof. Using the first n terms of the sequence fang= f1;5;7;13;17;25; : : :g defined above, the sequence
of n�1 differences of a2

1;a
2
2;a

2
3; : : : ;a

2
n is 24;24;120;120;336;336; : : : ;N;N where N = (n�1)(n)(n+

1). Here, the number of distinct differences is, clearly, (n�1)=2.

Hence, the set of squares contains arbitrarily long progressions, P, with the property

cardinality of the difference set of P
length of P

<
1
2

We do not know whether or not the value 1/2 in this statement can be improved. Also, this result can
be compared with that of Theorem 4.1 below.

Another proof of Theorem 2.1 can be obtained from the sequence fgng formed as follows: We start
with g1 = 1, g2 = a2, g3 = b2, where 1;a2;b2 is a 3-term AP. (The smallest such 3-term AP is 1,25,49.
The most general 3-term AP of this form is 1;a2;b2, where b=a is any even convergent of the simple
continued fraction of

p
2 — see below.) Then we define gi = bi�1 if i is odd and gi = a2bi�2 if i is even.

The sequence fgng has similar properties to those of fang.
In passing we note two interesting facts regarding APs in the squares.
The first is that the even terms of the sequence fang above are exactly the hypotenuses of all the

Pythagorean triples of the form A2+B2 = (B+1)2.
(Proof. This equation holds if and only if B+1 = (A2+1)=2. Thus A must be odd (= 2k+1) and so

B+1 = a2k.)
The second fact is this: 1;a2;b2 (where a > 0, b > 0) is a 3-term AP if and only if b=a is an even

convergent of the simple continued fraction of
p

2.
(Proof. If 1;a2;b2 is a 3-term AP, then 1+ b2 = 2a2, which gives 2� b2=a2 = 1=a2 or (

p
2�

b=a)(
p

2+b=a) = 1=a2. Thus

0 <
p

2� b
a
=

1
(
p

2+b=a)a2
<

1
2a2

which yields the result. (See [4].) One can also prove this starting with the equation b�2a2 =�1. For
the converse, one easily shows by induction on n that if p2n=q2n is the (2n)th convergent of the simple
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continued fraction of
p

2, then 1;q2
2n; p2

2n is a 3-term AP.)

3 Quasi-Progressions

We now turn our attention to quasi-progressions of squares. While no 4-AP of squares exists, we can
nevertheless construct infinitely many 4-term quasi-progressions of squares each with diameter 1. That
is, sequences a2 < b2 < c2 < d2 where the difference set fb2 � a2;c2 � b2;d2 � c2g = fD;D+ 1g for
some D. Such a sequence is called a 4-QP(1).

Theorem 3.1. There are infinitely many 4-QP(1)’s among the squares.

Proof. Let (a;b;c) be any Pythagorean triple. Recall that (b�a)2;c2;(b+a)2 is a 3-term AP. We note
that (b+a)2 +2ab is not a square lest we get the 4-AP of squares (b�a)2;c2;(b+a)2;(b+a)2 +2ab.
Let (x;y) be any one of the infinitely many solutions to the Pellian equation

x2� �(b+a)2+2ab
�

y2 = 1

Then (b� a)2;y2;c2y2;(b+ a)2y2;x2 is a 4-QP(1) since the first two differences are 2aby2 and the last
difference is

x2� (b+a)2y2 =
�
(b+a)2+2ab

�
y2+1� (b+a)2y2

= 2aby2+1

Similar 4-QP(1)’s, where the third difference is one less than the first two differences, may be
found in the same way from solutions to the equation x2 � �

(b+a)2+2ab
�

y2 = �1 when they ex-
ist. Furthermore, the x2 may be made the first term of the 4-progression when (x;y) is a solution to
x2� �(b�a)2�2ab

�
y2 =�1 (provided (b�a)2 > 2ab).

The simplest example: take the Pythagorean triple (3;4;5). Then (b+a)2+2ab = 73 and a solution
to x2�73y2 =�1 is x = 1068, y = 125. The 4-QP(1) produced is 1252;(5 �125)2;(7 �125)2;10682 with
difference sequence 24 �1252;24 �1252;24 �1252�1.

Examples with very large numbers are also easy to produce provided you can solve the Pellian
equation. In fact, most 4-QP(1)’s in the squares consist of very large numbers.

We do not know whether or not there exists any 5-QP(1) among the squares. In fact, we have no
found a 5-QP(5) among the squares. Here is a 5-term progression of squares with small difference set
diameter: 12;412;582;712;822. The differences are 1680, 1683, 1677, 1683 so the progression is a 5-
QP(6). Another 5-QP(6) is: 102;252;342;412;472. Although these examples are curious, they are not
very significant in the present context since it happens that any progression of five consecutive squares
is a 5-QP(6).

We offer the following conjecture: for each K � 0, there is an N such that any n-progression of
squares, with n� N, is not an n-QP(K). (For K = 0, we have N = 4, but this is all we know.)
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4 Semi-progressions

For a given function g, an n-SP(g) is a set fb1;b2; : : : ;bng such that the diameter of the set fb2�b1;b3�
b2; : : : ;bn� bn�1g is less than or equal to g(n). If a set X contains n-SP(g)’s for arbitrarily large n, we
say that X has property SP(g).

We remark that, if g(k) is bounded above by a polynomial, property SP(g) is stronger than the prop-
erty of containing arbitrarily long descending waves. (See [2].)

As was remarked in [2], the set of squares has property SP(2n). (Just consider the progression
consisting of the first n squares. The diameter of the difference sequence is

�
n2� (n�1)2

���22�12
�
=

2n�4 < 2n.)
Our purpose here is to improve this result by replacing 2n with (3=2)n.

Theorem 4.1. The set of squares has property SP((3=2)n).

Proof. We wish to prove that there are arbitrarily long progressions of squares a2
1 < a2

2 < a2
3 < � � �< a2

n

such that the diameter of the difference set, D = maxfa2
i+1 � a2

i g�minfa2
i+1 � a2

i g, does not exceed
(3=2)n. In other words (D=n)� (3=2).

We will refer to a positive integer a as the base of the square a2. Let K be a positive integer and let
A = 2K . We construct the following progression, B, squares: The progression B will be the union of the
K+1 blocks of squares B0;B1; : : : ;BK where

B0 =
�
(2A)2	

B1 =

(�
2A+

A
2

�2

;

�
2A+2

A
2

�2

;

�
2A+3

A
2

�2

;

�
2A+4

A
2

�2
)

...

Bi =

(�
2iA+

A
2i

�2

;

�
2iA+2

A
2i

�2

;

�
2iA+3

A
2i

�2

; : : : ;

�
2iA+4i A

2i

�2
)

...

BK =
n�

2KA+1
�2
;
�
2KA+2

�2
;
�
2KA+3

�2
; : : : ;

�
2KA+4K�2

o

We observe that jBij= 4i for 0� i� K. Hence the progression B has length

n = 1+4+42+ � � �+4K =
1
3
�
4K+1�1

�
:

Also note that the base of the last term of Bi is 2i+1A. Since the bases of the squares, starting from the
last term of a given block and continuing through all the terms of the next block, increase by a constant
amount (= A=2i in block Bi), the difference sequence of the squares is increasing for these terms. In
order to calculate the diameter of the difference set, we need only check the K largest differences (which
occur between the last two terms of the blocks) and the K smallest differences (which occur between the
last term of a block and the first term of the succeeding block). Finding the largest and smallest among
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these differences will produce our D. The largest difference in block Bi is

�
2i+1A

�2�
�

2i+1A� A
2i

�2

=
A
2i

�
2i+2A� A

2i

�
= 4A2� A2

4i ;

and the maximum of these occurs when i = K and is equal to 4A2�1 = H. The difference from the last
term of Bi+1 is

�
2i+1A+

A
2i+1

�2

� �2i+1A
�2
=

A
2i+1

�
2i+2A+

A
2i+1

�
= 2A2+

A2

4i+1 ;

and the minimum of these occurs at i+1 = K with value 2A2+1 = L. Hence

D = H�L = 2A2�2 = 22K+1�2

and, finally, our last calculation completes the proof:

D
n
=

22K+1�2
1
3 (4

K+1�1)
=

3
�

1� 1
22K

�
2
�

1� 1
22K+2

� <
3
2

We do not know whether or not this theorem is best possible. Perhaps the set of squares possesses
property SP((1+ ε)n) for every ε > 0, or even property SP(n).
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