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Abstract

The study of the structure of infinite words having bounded abelian complexity was initiated by G.
Richomme, K. Saari, and L. Q. Zamboni [ |]. In this note we define bounded additive complexity for

infinite words over a finite subset of Z". We provide an alternative proof of one of the results of [11].

1 Introduction

Recently the study of infinite words with bounded abelian complexity was initiated by G. Richomme, K.
Saari, and L. Q. Zamboni [ 1]. (See also [3] and the references in [3] and [11].) In particular, it is shown
(in [11]) that if @ is an infinite word with bounded abelian complexity, then @ has abelian k-factors for
all k > 1. (All these terms are defined below.)

In this note we define bounded additive complexity, and we show in particular that if ® is an infinite
word (whose alphabet is a finite subset S of Z™ for some m > 1) with bounded additive complexity,
then w has additive k-factors for all k > 1. As we shall see, this provides an alternative proof of the
just-mentioned result concerning abelian k-factors.

We are motivated by the following question. In [6—8], and [10], it is asked whether or not there exists
an infinite word on a finite subset of Z in which there do not exist two adjacent factors with equal lengths
and equal sums. (The sum of the factor x;x,...x, is x; +x2 + -+ + x,,.) This question remains open,
although some partial results can be found in [1, 2, 6].

2 Additive complexity

2.1 Infinite words on finite subsets of Z

Definition 2.1. Let @ be an infinite word on a finite subset S of Z. For a factor B = x1x;...x, of ®, Y. B

denotes the sum x| +xp + -+ - +x,,. Let

do(n) = {ZB . Bis a factor of @ with length n}.
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The function |@g| (Where |@g|(n) = |¢o(n)],n > 1) is called the additive complexity of the word o.

If B|B; - By is a factor of w such that |B|| = |[By| =--- = |By| and Y B) =Y By = --- = Y. By, we
call B1B; - By an additive k-power.

We say that @ has bounded additive complexity if any one (and hence all) of the three conditions in

the following proposition (Proposition 2.1) hold.

Proposition 2.1. Let o be an infinite word on the alphabet S, where S is a finite subset of Z. Then the
following three statements are equivalent.

1. There exists My such that if BB is a factor of @ with |B| = |Ba|, then |Y.B| — Y. Bz2| < M.

2. There exists My such that if By, B, are factors of @ (not necessarily adjacent) with |Bj| = |Ba|,
then |Y.B1 — Y. Ba| < M,.

3. There exists M3 such that |¢p,(n)| < Mz foralln > 1.

Proof. We will show that 1 & 2 and 2 & 3.

Clearly 2 = 1. Now assume that 1 holds, that is, if B; B is any factor of @ with |B;| = |By|, it is the
case that |y B — Y. Bs| < M. Now let By and B, be factors of @ with |B;| = |Ba|, and assume that B)
and B, are non-adjacent, with By to the left of B,.

Thus, assume that

B1A1A2B,

is a factor of @, where

|A1] = |Az| or |A1] = |A2|+ 1.

Let
Ci = B1A;,Cy = AyBy.
Then
|Ci| = |G| or |C1] = |Ca] + 1.
Now
Ya-Ya=0)B+)A)-() A+) B),
or

YBi-YB=}C-YC)+(YAa-)YA).

Therefore, since Aj,A, and C;,C; are adjacent, we have
1Y A=Y Ay <M +maxS, |Y Ci—) G| <M+ maxS$,

and
|Y B =) By| < 2M; 4+ 2maxS,

so that we can take M> = 2M; +2maxS. Thus 1 = 2.

Next we show that 2 = 3. Thus we assume there exists M, such that whenever B}, B, are factors of
® (not necessarily adjacent) with |Bj| = |Ba|, it is the case that |} B; — Y. Ba| < Mj.



Let n be given, and let Y B; = min @y (n). Then for any B, with |By| = n, we have Y B, = Y B +
(X B, —Y By). Therefore Y B, <Y B| +M>. This means that ¢, (n) C [¥.B1,Y. B1 +M>], so that | @y (n)| <
My +1.

Finally, we show that 3 = 2. We assume there exists M3 such that |@y(n)| < M3 for all n > 1.
Suppose that B; and B, are factors of @ such that |Bj| = |B2] = n and Y B| = min¢,(n), Y By =
max @ (n). To simplify the notation, for all a < b let ®[a,b] denote x,x4+1 -..xp, and let us assume
that By = o[1,n],B, = w[g+ 1,q+n], where g > 1.

For each i,0 <i < g, let b; denote the factor w[i+ 1,i+n]. Thus B| = by, By = by, and the factor b;
is obtained by shifting b; one position to the right. Clearly

Y bis1—) bi < maxS—minS.

Since |bo| = |b1| =--- = |by| = n, and | (n)| < M3, there can be at most M3 distinct numbers in the
sequence ) By =Y bg,) b1,..., Y. by, = Y. B>. Let these numbers be

ZBlzcl<cz<-~~<c,:ZB2,

where r < M3.
Since }.b;11 — Y b <maxS—minS, 0 <i<g,itfollows thatcjy 1 —c; <maxS—minS, 0 <i<r—1,
and hence that
|ZB1 —ZB2| < (M3 —1)(max S — minS).

O

Theorem 2.2. Let @ be an infinite word on a finite subset of 7. Assume that ® has bounded additive

complexity. Then @ contains an additive k-power for every positive integer k.

Proof. Let @ = x1xx3--- be an infinite word on the finite subset S of Z, and assume that whenever
B\,B; are factors of @ (not necessarily adjacent) with |Bj| = |By|, then |Y.B; — Y Bz| < M. (This is
from part 2 of Proposition 2.1.)

Define the function f from N to {0,1,2,...,M,} by

f(n)=xi+x24+x3+-+x, (modM,+1), n>1.

This is a finite coloring of N; by van der Waerden’s theorem, for any k there are ¢, s such that

F@O)=f@+s)=f(+2s)="---f(t +ks).

Setting
Bi=olt+(i—1)s+1,t+is], 1<i<k,



we have

YB=YB=-=YB (modM+1).

Since BB, --- By is a factor of w with |B;| = |Bj|,1 <i < j <k, we have |Y B; — Y. Bj| < M, and
Y Bi=Y B; (mod M>+1), hence Y. B; =Y B,.
Thus |Bi| = |B2| =--- = |Bi| and Y. B = Y, By = --- = ¥ By, and @ contains the additive k-power
B,B,---B;.
O

2.2 Infinite words on subsets of Z™"

Let us use the notation (u); for the jth coordinate of u € Z™. That is, if u = (uy,...,u,) then (u); = u;.
Also, |u| = |(u1,...,un)| denotes the vector (|uy|,...,|un)|). In other words, (|u|); = |(u),|.

For factors By, B; of an infinite word @ on a finite subset S of Z™, the notation |} B; — Y B>| < M;
means that (|YB1 —Y.B>|); <M, 1 < j<m.

Now we suppose that @ is an infinite word on a finite subset S of Z" for some m > 1. The definition

of ¢, and the additive complexity of w is exactly as in Definition 1.1 above. The function
0o (n) = {ZB : Bis a factor of ® with length n}

is called the additive complexity of the word .

By working with the coordinates (By) ;, (| B1 — L Ba|);, we easily obtain the following results.
Proposition 2.3. Proposition 2.1 remains true when Z, is replaced by 7.

Theorem 2.4. Let @ be an infinite word on a finite subset of Z'™ for some m > 1. Assume that ® has

bounded additive complexity. Then  contains an additive k-power for every positive integer k.

The following is a re-statement of Theorem 2.4, in terms of m infinite words on Z, rather than one

infinite word on Z™.

Theorem 2.5. Let m € N be given, and let S1,53,...,Sn be finite subsets of Z.. Let ®; be an infinite word
on S; with bounded additive complexity, 1 < j < m. Then for all k > 1, there exists a k-term arithmetic
progression in N,t,t +s,t +2s,...,t + ks such that for all j,1 < j<m,

Yoji+1Li+s]=Y ot +s+1,t+2s] =--- =Y @[t + (k—1)s+ 1,1 +ks].

Thus @1, w, -+ , Oy have “simultaneous" additive k-powers for all k > 1.



3 Abelian complexity

Definition 3.1. Let » be an infinite word on a finite alphabet. Two factors of ® are called abelian
equivalent if one is a permutation of the other. If the alphabet is A = {a;,az,...,a, }, and the finite word
B is a factor of @, we write W(B) = (u1,u2,...,u;), where u; is the number of occurrences of the letter i
in the word B, 1 < i <t. We call y(B) the Parikh vector associated with B.

Let wy(n) = {w(B) : B s a factor of ®, |B| = n}. The function p¢’, defined by p& (n) = |y (n)|,n >
1, is called the abelian complexity of .

Thus p¢(n) is the largest number of factors of @ of length 7, no two of which are abelian equivalent.
If there exists M such that p?(n) < M for all n > 1, then @ is said to have bounded abelian complexity.

The word BB, - - By is called an abelian k-power if By, By, ...,By are pairwise abelian equivalent.
(Being abelian equivalent, they all have the same length.)

Recall that we are using the notation |(u1,u,...,u;)| < M to denote |u;| <M,1 <i<t.

Proposition 3.1. Let @ be an infinite word on a t-element alphabet S. Then the following three state-
ments are equivalent.

1. There exists My such that if B1B; is a factor of ® with |B1| = |Ba|, then |y (B;) — w(Bz)| < M.

2. There exists My such that if By, B, are factors of @ (not necessarily adjacent) with |B|| = |Ba|,
then |y(B1) — y(B2)| < M>.

3. There exists M3 such that such that p&’(n) < M for all n > 1.

Proof. We show that 1 < 2 and 2 < 3.

Clearly 2 = 1. Now assume that 1 holds, that is, if B B; is any factor of @ with |B;| = |By|, it is the
case that |y (B;) — y(B;)| < M;. Now let B; and B; be factors of @ with |Bj| = |Ba|, and assume that
By and B, are non-adjacent, with B to the left of B,.

Thus, assume that

B1A1A2B,

is a factor of @, where

|A1| = |A2| or |A1| = |A2|+1.

Now we proceed exactly as in the proof of 1 = 2 in Proposition 2.1, noting that |y(A;) — w(A2)| <
M +1.

Next we show that 2 = 3. Thus we assume there exists M, such that whenever B}, B, are factors of
® (not necessarily adjacent) with |B;| = |Ba|, it is the case that |y(B1) — y(B2)| < M>.

Let n be given, and let B; € y,(n). Then for any By with |Bsy| = n, we have y(By) = y(B)) +
(w(B2) — y(B1)). Therefore |y(B,)| < |y(B1)|+M,. (This inequality is component-wise, that is, (|y/(B2)|)j <
(lw(B1)])j+ M, 1 < j<t)

Therefore there are at most 2M, — 1 choices for each component of B,, and hence p% (n) < (2M, —

1)

Finally, we show that 3 = 2. We assume there exists M3 such that p?(n) < M5 for all n > 1.



Since |y(xB) — y(By)| < 1 for all x,y € S, it follows that if @ has factors By, B; of length n where
for some j,1 < j <t,(y(B1)); = p and (¥(B2)); = p+ g, then ® has factors C, of length n with
(v(C))j = p+r0<r<gq. (This is discussed in more detail in [ 1].) Thus |y(B;) — y(B2)| > M3 im-
plies p&(n) > M3 + 1. Since we are assuming p&’(n) < M3,n > 1, we conclude that |y(B;) — w(By)| <
M3 — 1 whenever |B;| = |B,|. Hence |W(B)) — w(B,)| < M3 — 1 whenever |B;| = |B|.

O

Remark 3.1. To see that bounded sum complexity is indeed weaker than bounded abelian complexity,
consider the following example. Let 6 = xx2x3 - - - be the binary sequence constructed by Dekking [5]
which has no abelian 4th power. In o, replace every 1 by 12, and replace every 0 by 03, obtaining the
sequence 7. If 7 had an abelian 4th power ABCD, then the number of 2s in each of A, B,C, D are equal,
and similarly for the number of 3s. But then dropping the 2s and 3s from ABCD would give an abelian
4th power in o, a contradiction. Hence 7 does not have bounded abelian complexity. Now let a factor
B of T be given. By shifting B to the right or left, we see, by examining cases, that if |B| is even then
Y.B = 3|B| +s, where s € {—1,0,1}. If |B| is odd, then ¥.B = 3(|B| — 1) +s, where s € {0,1,2,3}.
Hence |¢;(n)| < 4 for all n > 1, and 7 does have bounded sum complexity.

Definition 3.2. Let S = {a;,az,...,a,,} be a subset of Z, and let @ = x;xpx3 -+ be an infinite word on
the alphabet S. Foreach j,1 < j <m, let a’j be the element of Z™ which has a; in the in the jth coordinate
and 0's elsewhere. Let @' = x{x,x} - - - be the word on the subset S’ of Z",§" = {d},d), ..., a,,}, obtained
from @ by replacing each a; by a’j, 1 < j < m. It is convenient to visualize each a’j as a column vector,

rather than as a row vector.

Theorem 3.2. Referring to Definition 2.2, consider the following statements concerning ® and ':

. @ has bounded abelian complexity.

. @' has bounded abelian complexity.

. @' has bounded additive complexity.

' contains an additive k-power for all k > 1.

' contains an abelian k-power or all k > 1,

AL AW N~

. @ contains an abelian k-power for all k > 1

Then1 23,4655 6,3=4,and4+3

Proof. Clearly 1 & 2 and 5 & 6.

The linear independence of S’ over Z implies that 2 < 3 and 4 < 5.

The implication 3 = 4 is a special case of the second part of Theorem 2.4.



To see that 4 # 3, note that if 4 = 3 then 6 = 1, which is shown to be false by the Champernowne
word [4]
C=01101110010111011110001001 - - -,

obtained by concatenating the binary representations of 0,1,2,... . This word has arbitrarily long strings
of 1’s (and 0’s), hence satisfies condition 6; but C does not satisfy condition 1. (Clearly for the sequence
C,p&(n)=n+1foralln>1.)

Corollary. Every infinite word with bounded abelian complexity has an abelian k-power for every k.

4 A more general statement

One can cast the arguments above into a more general form, and prove (we omit the details) the following
statement.

Theorem 4.1. Let S be a finite set, and let ST denote the free semigroup on S. Fort € N, let
w:st =7
be a morphism, that is, for all B1,B> € ST,
1 (B1B2) = 1(B1) + 1(B2).
Let @ be an infinite word on S. Assume further that there exists M € N such that
1B\ = [Bo] = [|u(B1) — u(Bo)l| < M,

where || -|| denotes Euclidean distance in Z!. Then for all k > 1, @ contains a k-power modulo L, that

is, @ has a factor B1B; - - - B, with

|Bi| = |Ba| = -+~ = |Bi|, u(B1)=u(B2)="---= pu(By).

Thus taking S to be a finite subset of Z", and p(B) =Y. B € Z™, we obtain Theorem 2.4.
Taking S to be a finite set and y1(B) = w(B) € Z!5!, we obtain the Corollary to Theorem 3.2.
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