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Abstract

We discuss integer sequences {7, } such that {7},} satisfies a second-order homogeneous linear re-
currence relation with constant integer coefficients, and {72} satisfies a second-order linear recurrence

relation with constant integer coefficients. We also prove some related results.

1 Introduction

Let us call a sequence {7,} an “mth-order sequence” if {7, },,>0 satisfies an mth order linear recurrence
relation with constant integer coefficients. It is well known [2, 3] that if {7, },>0 is a second-order
sequence then the sequence of squares {7,?},>0 is a third-order sequence. (It is also easy to show this
directly.) It would be of interest to be able to describe all second-order sequences {7, },>0 such that
{T?},>0 is a second-order sequence.

In this note we do this for certain homogeneous sequences {7, },>0. That is, we assume that {7}, },>0
satisfies a recurrence of the form Ty = a, T\ = b, T+ = cT,, —dT,—1, n > 1, where a, b, c 0, d # 0
are integers, ab # 0, and x> — cx +d = 0 has distinct roots. It then turns out that {7,>},>0 satisfies a
second-order linear recurrence (which we describe in Theorem 6) if and only if d = 1.

As an illustration of this, consider the sequence 1,2,7,26,97,362,..., which satisfies the second-
order recurrence By = 1, By =2, B,.1 = 4B, — B,_1,n> 1. The sequence of squares 12,22,72,26%,972,362, ...
satisfies the second-order recurrence So = 1, S; =4, S41 =145, —S,-1—6,n > 1.

We also consider second-order sequences {7}, },>0 such that a slight perturbation of the sequence of
squares {Tnz},,zo is a second-order sequence. For example, the sequence 1,1,3,7,17,41,99,... satisfies
the second-order recurrence B) = By = 1, B,,+1 = 2B, + B,—1, n > 1, and the “perturbed” sequence of
squares 12,1241,32, 7241, 172,412+ 1,992, . . ., satisfies the second-order recurrence So=1,81=2,
Spy1 =68, —S,-1—2,n> 1.

We begin with some special cases using elementary techniques. Then, in the last section, we handle
the general case using an old result of E. S. Selmer [2], which states that if 7,y = AT, + BT,_1,n > 1,
and x> —Ax—B= (x—a)(x—B), & # B, then T2, | = CT?+ DT> | + ET? ,, n > 2, where x> — Cx* —
Dx—E = (x—o?)(x— B?)(x — aB).
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2 Some special cases

We begin with some special cases, for which we will use the following Lemma.

Lemma. Let p > 4 be any integer, let § = \/g—i— 1/ % — 1, and let S, = (5” + %)2 n > 0. Then these

numbers S, satisfy the following identities.

(a) Forall0 <m<n,
(S —2)(Su—2) =Sntm+Sn—m—4.

(In particular, (S, —2)? = Sap, 0 Sy, is always a perfect square.)
(b) Forall0 <m <n, m=n(mod?2),
SnSm = (S(n+m)/2 + S(nfm)/Z - 4)2

(In particular, S,y 1Sy—i = (Sq+ Sk —4)? and pSyny1 = S15on+1 = (Sp+ Spe1 —4)?, s0 that Sxpy 1

is always a perfect square provided p is a perfect square.)
(c) Forall0 <m<n, m=n(mod 2),
(Su—4)(Sm—4) = Surm)j2 + Snemy2)*-

(In particular, (p—4)(Sani2 —4) = (S1—4)(Sans1 —4) = (Sur1—Sn)? so that Sy, 1 —4 is always
a perfect square provided p — 4 is a perfect square.)

(d) Spy1=(p—2)S,—Sp—1—2(p—4),n> 1.

Proof. We prove part (d) in detail. The proofs of parts (a), (b), and (c) are very similar, and are omitted.

Notethat%:\/g—q/ﬁ—l,sothat (3+%)2:p.Then
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1
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= n+2+Sn+2

that is, Sy = (p—2)Sp41— S, —2(p—4),n > 0. O

3 Second order sequences {7, },>o whose squares {Tnz}nzo are also

second order sequences. Special Cases.

Theorem 1. Let d > 3 be an integer. Define the sequence {By,},>0 by By =2, Bi =d, By12 = dBpy1 —
By, n > 0. Then the sequence of squares {Bﬁ}nzo satisfies the second-order recurrence B,% o= (d?> -

2)B2, | —B2—2(d*—4),n>0.



Proof. Solving the recurrence By = 2, B] = d, B2 = dB,4+1 — By, n > 0 in the usual way gives B, =
6" + W’ n >0, where 6 = \/‘Tz d2 -1, % \/j -9 4 _ 1. Let us now simplify the notation
by setting S, = B,%, n>0. Then S, = ( 1 2 , n >0, and by part (d) of the Lemma (with p = d?),
Spi2 = (d>=2)Sps1 =S, —2(d*>—4),n> 0. O

4 Perturbed sequences

Here we give a second-order sequence whose squares, when slightly perturbed, form a second-order
sequence.

Theorem 2. Letd > 1 be an integer. Define the sequence {C,},>0 by Co =2, C =d, Cpy2 =dCpy1+Cp,
n>0. Let Sy = C3,, Sons1 = C3,y +4, 1> 0. Then Syip = (d*+2)Sys1 — S, —2d* n > 0.

Proof. Solving the recurrence Cop =2, C; =d, Cy4 = an+1 +C,, n > 0 in the usual way gives C,, =

2
8"+ (F " where § = \/d2+1+\/d2 \/‘i—z-% — ThenSg,,—CZn (82”+52n),82n+1:

C2n+1+4_ (52n+1+ 52n+1) nZO

2
Since (8 + 3) =d? +4, we obtain (d> +4)S,41 = [(6 +3) (5”“ + 3o )] , and the calculations
used in the proof of part (d) of the Lemma now give S, 2 = (d* 4+2)S,11 — S, —2d*>, n > 0. O

Corollary 1. Let S, = L%n, Sonil = L%n +1+4, n>0, where {L,} is the Lucas sequence. Then Sy, =
38,11 —Sp—2,n>0.

Proof. This is the case d = 1 of Theorem 2. O

Corollary 2. Let Th, = F2 + %, D1 =F2 .., n > 0, where {F,} is the Fibonacci sequence. Then
y mTs + 2n+1 q
Tn+2 - 3Tn+1 - Tn —2, n Z 0.

Proof. This follows from Corollary 1 and the identity [ 1, pp. 56] SF? = L2 —4(—1)". O

5 Additional special cases

If we now write § = \/s—+/s— 1, S, = 1 (6" + 5,1) , n >0, we obtain, just as in the Lemma, Sp = I,
S1=5,8S42=4(s—2)Sy11 =S, —2(s—1),n>0.
The following two results can now be proved in essentially the same way as Theorems | and 2.

Theorem 3. Let d > 2 be an integer. Define the sequence {B,}n>0 by Bo = 1, Bl =d, Byyo =2dBy41 —

By, n > 0. Then the sequence of squares {B Yu>o satisfies the second-order recurrence
By, = (4d* —2)B,y1 — B, —2d*, n>0.

Theorem 4. Let d > 1 be an integer. Define the sequence {Cy,}n>0 by Co =1, Ci =d, Cpy2 =2dCpiy +
Cp, 1> 0. Let Sy, = C3,,, Sant1 = C3, 1, 1> 0. Then Spyp = (4d* +2)S,11 — Sy —2d% n > 0.



6 The more general homogeneous case

Theorem 5. Let a,b,c # 0, d # 0 be integers, with ab # 0 and ¢> # 4d. Let By=a, B = b, B,y =
¢Bp—dBy_1,n > 1. Then B> | = (¢* —2d)B: —d*B2_, + 2(b* — a®d — abc)d", n > 1.
Proof. Let a,3 be the roots of x> —cx+d = 0. Then a,f = %(c:t V2 —4d), a # +B, o?,p? =
Nt —2d+cV/c2—4d), af =d. Also a® # B2 # d, since ¢ £0,d # 0, > # 4d.
According to the result of Selmer stated in the Introduction, there are constants A, B, C such that
B2 =Aa® +BB* +Cd", n> 0.
Solving the system
a*> =Bj =A+B+C
> =B} =Aa’+Bp?+Cd
(bc—ad)> =B} =Ao*+BB*+Cd?

. 2(b*+-a*d—ab
for C gives C = %

Using (¢? —2d)a®" — d*>a®' =2 = o®**2 and (¢? — 2d) B> — d*B?"~% = B?"*+2 gives (¢* —2d)B2 —
d*B?_| +ed" = Aa®+? 4+ BB?"*2 4 C[(c* — 2d)d" — d"*'] + ed". Now choosing e so that C[(c* —
2d)d" — d"'] +ed" = Cd"t' (namely e = C(4d — ¢*) = 2(b* + a>d — abc)), finally gives (c> —2d)B2 —
d’B2_| +ed" = Aa*""? + BB*T2 4 Cd"t! = BZ |, which completes the proof. O

Remark. The result of Theorem 5 appears in [4].

Applying Theorem 5 to the question raised in the Introduction, we immediately get the following

result.

Theorem 6. Let a,b,c #0, d # 0 be integers, with ab # 0 and ¢*> # 4d. Let By = a, By = b, B, | = cB, —
dB,—1, n > 1. Then the sequence of squares {Bﬁ}nzo satisfies a second-order linear recurrence (with
constant coefficients) if and only if d = 1, in which case B2, | = (¢* —2)B2 — B2_, +2(b* + a* — abc),
n>1.

Our final result is the general version of Theorem 2, in which we consider a perturbation of the

sequence of squares.

2, 2
Theorem 7. Let a,b,c # 0, d # 0 be integers, with ab # 0 and ¢ # 4d, such that e = % is

an integer. Define the sequence {By,},>0 by Bo =a, B =b, Byy1 =cBy+B,_1, n > 1. Let Sy, = B%n,
Sona1 = B%n+1 +e,n>0. Then {S, }n>0 satisfies the second-order recurrence S, 1| = (2 +2)S,—Spu_1+
2e +2(b* —a®? —abc), n > 1.

Proof. This is a direct application of Theorem 5 with d = —1, according to which B2 = (c?+2)B2 -
B2 | +2(b* —a—abc)(—1)". O
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