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Abstract

Let V (n) denote the n-dimensional vector space over the 2-element field. Let a(m;r) (respectively,

c(m;r)) denote the smallest positive integer such that if n� a(m;r) (respectively n� c(m;r)), and V (n)

is arbitrarily partitioned into r classes Ci, 1� i� r, then some class Ci must contain an m-dimensional

affine (respectively, combinatorial) subspace of V (n). Upper bounds for the functions a(m;r) and

c(m;r) are investigated, as are upper bounds for the corresponding “density functions" ā(m;ε) and

c̄(m;ε).

1 Introduction and definitions

Throughout, V (n) denotes the n-dimensional vector space over the 2-element field F2 = f0;1g:

V (n) = f(x1; : : : ;xn) : xi 2 F2;1 � i � ng:

For integers m � 1, r � 1, a(m;r) is defined to be the smallest positive integer such that if n � a(m;r)

and V (n) is arbitrarily partitioned into r classes Ci, 1 � i � r, then some class Ci contains an affine
m-space. (An affine m-space is any translate (coset) of an m-dimensional vector subspace of V (n). An
affine 1-space is usually called an affine line.)

Similarly, c(m;r) is defined to be the smallest positive integer such that if n � c(m;r) and V (n)

is arbitrarily partitioned into r classes then some class must contain a combinatorial m-space. (The
definition of combinatorial m-space is given in Section 3 below.)

The existence of a(m;r) and c(m;r) for all m;r is a consequence of a special case of the extended
Hales-Jewett theorem [5, 6].

In this note we investigate upper bounds for the functions a(m;r) and c(m;r).
We also inverstigate upper bounds for the corresponding density functions ā(m;ε) and c̄(m;ε), which

are defined as follows.
For any integer m � 1 and real number ε > 0, ā(m;ε) (respectively, c̄(m;ε)) is defined to be the

smallest integer such that if n � ā(m;ε) (respectively, n � c̄(m;ε)) and A is an arbitrary subset of V (n)

which contains at least εjV (n)j elements, then A must contain an affine (respectively, combinatorial)
m-space.
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The existence of ā(m;ε) follows from a result of Brown and Buhler [2, Lemma 1], which in turn
is based upon a lemma of Szemerédi [7]. (See also Graham, Rothschild, and Spencer [5, p. 44] and
Graham [4, p. 19].)

The existence of c̄(m;ε) is a consequence of a different result of Brown and Buhler [3]. (The exis-
tence of ā(m;ε) also folows from this latter result.)

2 Upper bounds for a(m;r) and ā(m;ε)

For the definitions of a(m;r) and ā(m;ε), see Section 1.

Theorem 1. For m � 1, k � 1,

ā(m;2�k)� 2m(k+2): (1)

Proof. Let m � 1, k � 1 be given, and let n = 2m(k+2).
Let V =V (n), so that jV j= 2n and n = log jV j. (All logarithms here are taken with base 2.)
Now let ε = 2�k, and let

A �V; jAj � εjV j:

One obtains, after a little juggling,

m = log log jV j� log log(4=ε):

It is shown in [2] that under exactly these circumstances the subset A must contain an affine m-space.
Therefore ā(m;2�k)� n = 2m(k+2), as required.

Remark 1. When ε is not 2�k, one can still use Theorem 1 to get

ā(m;ε)� ā(m;2�k)� 2m(k+2);

where
2�k < ε < 2�(k�1):

Theorem 2. For m � 1;k � 1,

a(m;2k)� 2m(k+2): (2)

Proof. This follows immediately from Theorem 1, since if V (n) is partitioned into 2k classes, then at
least one of these classes has density at least 2�k. That is, if

V (n) =C1[�� �[C2k ;

then for some i,
jCij � 2�kjV (n)j:

Hence a(m;2k)� ā(m;2�k)� 2m(k+2).
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Remark 2. If r is not 2k, then one obtains

a(m;r)� a(m;2k)� 2m(k+2)

where
2k�1 < r < 2k:

Theorem 3.

a(m;1) = m; m � 1; (3)

a(1;r) = 1+[log2 r]; r � 1; (4)

a(2;2k�1)� 3k; k � 2; (5)

a(3;2k�1)� 10k�2; k � 3; (6)

a(3;3)� 15; a(4;3)� 55: (7)

Proof. Equalities (3) and (4) are obvious. Note that any 2-element suset of V (n) is an affine line in V (n).
Inequalities (5) and (6) are proved using the following method.
To prove (5), fix k � 2 and let

V (3k) =V (2k)�V (k)

be partitioned into 2k�1 classes Ci, 1 � i � 2k�1. We need to show that some affine 2-space in V (3k)

is contained in some Ci.
Let y 2V (2k). Then fyg�V (k) is partitioned into 2k�1 classes

(fyg�V (k))\Ci; 1 � i � 2k�1:

Since a(1;2k�1) = k, there is an affine line

f (y)�V (k)

such that the affine line
fyg� f (y)�V (3k)

is contained in some Ci.
Now we partition V (2k) into (2k�1)2 classes D(i; j), 1� i� 2k�1, 1� j � 2k�1, in the following

way. Let the distinct 1-dimensional vector subspaces of V (k) be denoted by S j, 1� j � 2k�1. Then the
element y of V (2k) belongs to the class D(i; j) if and only if fyg� f (y)�Ci and f (y) is a translate of S j.

Since a(1;(2k � 1)2) = 1+ [log2(2
k � 1)2] = 2k, there is an affine line fy1;y2g contained in some

D(i; j). It follows that
fy1g� f (y1)[fy2g� f (y2)

is an affine 2-space contained in Ci. This proves (5).
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The proof of (6) uses the same idea. Fix k � 3, and let

V (10k�2) =V (7k�2)�V (3k)

be partitioned into 2k � 1 classes Ci, 1 � i � 2k � 1. We need to show that some affine 3-space of
V (10k�2) is contained in some Ci.

Let y 2V (7k�2); then fyg�V (3k) is partitioned into

(fyg�V (3k))\Ci; 1 � i � 2k�1:

Since a(2;2k�1)� 3k, there is an affine 2-space

f (y)�V (3k)

such that the affine 2-space
fyg� f (y)�V (10k�2)

is contained in some Ci.
Now we partition V (7k�2) into (2k�1)t classes D(i; j), 1 � i � 2k�1, 1 � j � t, where

t =
(23k�1)(23k�2)
(22�1)(22�2)

is the number of 2-dimensional vector subspaces of V (3k), just as before: Let the 2-dimensional vector
subspaces of V (3k) be denoted by S j, 1 � j � t. Then the element y of V (7k� 2) belongs to the class
D(i; j) if and only if fyg� f (y)�Ci and f (y) is a translate of S j.

Now a(1;(2k � 1)t) = 1+ [log2(2
k � 1)t] = 7k� 2 (for this we need k � 3), and hence there is an

affine line fy1;y2g contained in some D(i; j). It follows that

fy1g� f (y1)[fy2g� f (y2)

is an affine 3-space contained in Ci. This proves (6).
The bounds in (7) are proved using the same method.

Remark 3. If the method above is continued to a(4;2k�1), a(5;2k�1) and so on, the resulting bounds
are not as strong as those given by Theorem 2 (With the exception of a(4;3).)

3 Upper bounds for c(m;r) and c̄(m;ε)

For the definitions of c(m;r) and c̄(m;ε), see Section 1.

Definition 1. A combinatorial m-space in V (n) is any set S (of 2m elements of V (n)) which can be
described as follows. For some partition

f1;2; : : : ;ng= B0[B1[�� �[Bm;
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where B0 may be empty but B j is not empty, 1 � j � m, and for some function f from B0 into F2, S is
the set of all points (x1; : : : ;xn) in V (n) such that

xi = f (i); for i 2 B0;

xi = xi0 ; for i; i0 2 B j;1 � j � m:

A combinatorial 1-space is usually called a combinatorial line.
For example, with m = 3, n = 8, B0 = f1;2g, B1 = f3;4g, B2 = f5g, B3 = f6;7;8g, f (1) = f (2) = 1,

S is the 3-space
11 00 0 000
11 00 0 111
11 00 1 000
11 00 1 111

11 11 0 000
11 11 0 111
11 11 1 000
11 11 1 111

:

With m = 1, n = 8, B0 = f1;2;3;4g, B1 = f5;6;7;8g, f (1) = f (4) = 1, f (2) = f (3) = 0, S is the line

10010000
10011111

:

Theorem 4. For each r � 1,

c(1;r) = r:

Proof. If V (r) =C1[�� �[Cr, then some two of

000 � � �0
100 � � �0
...
...
...

...

111 � � �1

belong to the same class Bi. Hence c(1;r)� r.
Let V (r�1) =C0[�� �[Cr�1, where for 0 � i � r�1,

Ci =

(
(x1; : : : ;xr�1) 2V (r�1) :

r�1

∑
j=1

x j = i

)
:

Then no Ci contains a combinatorial line, Hence c(1;r)� r.

The proof of Theorem 5 below is similar to the proof of Theorem 3. The main part of the proof is
contained in the following Lemma.

Lemma 1. Let m � 1, r � 1, be given, and let t(m;r) be the number of distinct combinatorial m-spaces

contained in V (c(m;r)). Then

c(m+1;r)� r � t(m;r)+ c(m;r):

5



Proof. For convenience write t = t(m;r) and s = c(m;r). Let

V (rt + s) =V (rt)�V (s)

be partitioned into r classes Ci, 1� i� r. To show that some combinatorial (m+1)-space in V (rt + s) is
contained in some Ci, we proceed just as in the proof of Theorem 3.

For each y 2V (rt), fyg�V (s) has been partitioned into classes

fyg�V (s)\Ci; 1 � i � r;

and since s = c(m;r) there is a combinatorial m-space

f (y)�V (s)

such that the combinatorial m-space

fyg\ f (y)�V (rt + s)

is contained in some Ci.
Now partition V (rt) into rt classes D(i; j), 1 � i � r, 1 � j � t, by putting the element y of V (rt)

into the class D(i; j) if and only if fyg� f (y)�Ci and f (y) = S j, where S1; : : : ;St are the combinatorial
m-spaces in V (s).

Since c(1;rt) = rt, there is a combinatorial line fy1;y2g contained in some D(i; j), and therefore

fy1g� f (y1)[fy2g� f (y2)

is a combinatorial (m+1)-space contained in Ci.

Lemma 2. The number of combinatorial m-spaces in V (s) is

1
m!

m

∑
j=0

(�1) j
�

m
j

�
(m+2� j)s:

Proof. Each combinatorial m-space in V (s) corresponds to an s-tuple on the m+2 symbols 0;1;b1; : : : ;bm,
in which each b j, 1 � j � m, occurs at least once. In the examples described after the Definition above,
the 3-space corresponds to 11b1b1b2b3b3b3, and the 1-space (line) corresponds to 1001b1b1b1b1. Count-
ing by inclusion-exclusion gives the result.

Theorem 5. For m = 2, r � 1, we have

c(2;r)< r � (3r �2r)+ r < r �3r:

In general, for m � 2, r � 1,

c(m;r)< r � ((m+1)r)(m
r)�

�
(4r)(3

r)

:
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Proof. This is a crude estimate based on Lemmas 1 and 2.

We now turn to upper bounds for the function c̄(m;ε).

Theorem 6. For m � 1, r � 1,

c̄(m;1) = 1;

c̄(1;1=r)� r2:

Proof. It is an easy consequence of Sperner’s lemma on families of pairwise incomparable subsets of a
set (see [4] for details) that if A is any subset of V (n) such that A contains no combinatorial line then

jAj �
�

n
[n=2]

�
:

Using
nne�n

p
2πne1=(12n+1) � n! � nne�n

p
2πne1=12n;

one obtains �
n

[n=2]

�
<

r
2
π
� 1p

n
�2n; n � 1:

Hence if A �V (r2), jAj � (1=r)jV (r2)j, then

jAj � 1
r
�2r2

>

r
2
π
� 1p

r2
�2r2

>

�
r2

[r2=2]

�
;

and therefore A contains a combinatorial line.

Lemma 3. For m � 1, r � 1, let n = c̄(m;1=(r+ 1)) and let e be the number of distinct combinatorial

m-spaces contained in V (n). Then

c̄(m+1;1=r)� n+ r4e2:

In particular, using Theorem 6 and Lemma 2,

c̄(2;1=r)� (r+1)2 + r4(3(r+1)2 �2(r+1)2)2:

Proof. It is shown in [3] that
c̄(m+1;1=r)� n+ c̄(1;(r2e)�1):

Applying Theorem 6 gives the result.

One can now apply Lemma 3 (and Lemma 2) repeatedly to get an explicit upper bound for c̄(m;1=r).
One estimate obtained in this way is the following.

Theorem 7. For m � 2, r � 1, let s = (r+m�1)4. Then

c(m;1=r)� r4((m+1)s)(m
s)�

�
(4s)(3

s)

:
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4 Remarks

Since Theorem 1 above is surely much stronger than Theorem 2, it should be possible to considerably
strengthen Theorem 2.

Replacing the two-element field F2 by the three-element field F3 (or any larger field) leads to con-
siderable difficulties. Let a(m;r;q); : : : be the functions defined analogously to a(m;r); : : : , where F2 is
replaced by the q-element field Fq. (The definitions of affine m-space and combinatorial m-space remain
unchanged. Note, however, that the definition of a combinatorial m-space does not require a finite field,
but only a finite set.)

The existence of a(m;r;q) and c(m;r;q) follows from the Hales-Jewett theorem. The existence of
ā(m;ε;q) is known only for q = 2 and q = 3 [2, 3], and the existence of c̄(m;ε;q) is not known even for
q = 3. R. L. Graham has offered a reward [4] for an answer to the question of the existence of c̄(1;ε;3).

Following the methods used above to prove Theorems 3, 5, and 7, one could calculate upper bounds
for, say, a(m;r;3) and ā(m;ε;3), and c(m;r;3) in terms of upper bounds for the case m = 1. However, no
satisfactory upper bounds for a(1;r;3), ā(1;ε;3), and c(1;r;3) have been found.

(It is trivial that a(1;1;3) = 1 and a(1;2;3) = 2. A recent calculation [1] shows that a(1;3;3) = 4:)
Finally, we remark that by identifying V (n) with the set of subsets of f1; : : : ;ng in the natural way,

the combinatorial m-spaces in V (n) become identified with collections of the form

(
A0[
[

i2I

Ai : I � f1; : : : ;ng
)
;

where A0;A1; : : : ;Am are pairwise disjoint subsets of f1; : : : ;ng and A1; : : : ;Am are non-empty.
The functions c(m;r) and c̄(m;1=r) can be interpreted from this point of view. Related bounds have

been found by Alan Taylor [8] for the case where A0 is empty and I is non-empty.
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