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Abstract

The classical theorem of Schmidt on locally finite group extensions may be stated as follows: If

ϕ : G 7!H is a homomorphism of the group G onto the locally finite group H with locally finite kernel,

then G is locally finite.

In this paper we prove the exact analogue of this theorem for semigroups. Then in the last section

we give several consequences, including the well-known theorem of Shevrin which states that a band

of locally finite semigroups is locally finite, and the theorem of Green and Rees on the equivalence of

Burnside’s problem for groups with “Burnside’s problem for semigroups".

1 Introduction

The whole of this paper is based on Lemma 2 below, which is essentially combinatorial. The methods
are completely elementary in nautre, and the paper is self-contained, except for a few facts used in the
last two sections. The theorem we wish to prove is the following.

Theorem. If ϕ : S 7! T is a homomorphism of the semigroup S onto the locally finite semigroup T such

that eϕ�1 is a locally finite subsemigroup of S for each idempotent element e of T , then S is locally finite.

First we note that it is sufficient to consider the case where T is finite. For suppose the theorem
is true in this case, and let ϕ : S 7! T 0 be a homomorphism with all the required properties onto an
arbitrary (possibly infinite) locally finite semigroup T 0. Let A be a finite subset of S, and let hAi denote
the subsemigroup of S generated by A. It is required to show that hAi is finite. Now hAϕi= T is a finite
subsemigroup of T 0, since T 0 is locally finite, hence all we have to do is to restrict ϕ to T ϕ�1 to get a
homomorphism ϕ 0 : T ϕ�1 7! T onto a finite semigroup T ; furthermore ϕ 0 has all the required properties.
Hence by our assumption, T ϕ�1 is locally finite. But A � T ϕ�1, hence hAi is finite, as required.

In Sections 2 throug 4 below, we shall prove the theorem for the special cases where T is a (finite)
group, group with zero, null semigroup, simple semigroup, or 0-simple semigroup. (For definitions see
below). In Section 5 we give some consequences to the theorem.

Assuming the truth of the theorem for the special cases listed above, the general case follows by
induction on jT j, the order of T , as follows. For jT j = 1, the theorem is trivial. Let T be a finite
semigroup and suppose the theorem holds for all semigroups T 0 with jT 0j< jT j. If T has no proper non-
zero ideals, then T is either null, simple, or 0-simple, and S is then locally finite by the appropriate special
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case. If T has a proper non-zero ideal M, then let T 0 = T=M, the Rees factor semigroup (for definition,
see below), let ψ be the natural mapping of T upon T 0, and let σ = ϕψ . Since σ is a homomorphism of
S upon T 0, and jT 0j< jT j, all we have to verify is that eσ�1 is locally finite for each idempotent element
e of T 0; for then by the inductive assumption S is locally finite. Thus let e be an idempotent element of
T 0. If e 6= 0, then eσ�1 = (eψ�1)ϕ�1 = eϕ�1, and eϕ�1 is locally finite by hypothesis. If e = 0, then
0σ�1 = (0ψ�1)ϕ�1 = Mϕ�1, and Mϕ�1 is locally finite by the inductive assumption.

In the remainder of the proof (and above), the following definitions are used. If a semigroup S

contains an element 0 such that 0s = s0 = 0 for all s 2 S, S is a semigroup with zero. In case S n f0g is
a group, S is a group with zero. A subsemigroup M of S is an ideal is SMS[MS[ SM � M, and is a
proper ideal if M 6= S. A semigroup without proper ideals is simple. A semigroup S with zero is 0-simple

if S2 6= f0g and f0g is the only proper ideal of S. S is null if S2 = f0g. Let M be an ideal of S; the Rees

factor semigroup of S modulo M, denoted by S=M, is defined as follows. As a set, S=M = (SnM)[f0g.
For x;y 2 S, let xy denote their product in S and x� y their product in S=M. Then, by definition, x� y = 0
if xy 2 M, x� y = xy if xy =2 M, and 0� z = z�0 = 0 for all z 2 S=M. The mapping x 7! 0, x 2 M, x 7! x,
x =2 M, is the natural homomorphism of S upon S=M.

We shall also require the following:
Let A be a subset of the semigroup S. If x 2 hAi, then we say that x has length m (with respect to A)

if x can be written as the product of m elements (not necessarily distinct) from A and cannot be written
as the product of any smaller number of elements from A. Thus, x has length m if and only if

(1) x = x1x2 � � �xm (xi 2 A;1 � i � m)
(2) x = y1y2 � � �yn (yi 2 A;1 � i � n) implies n � m.
If x has length m with respect to some set A, we simply write jxj= m; the paricular set A upon which

jxj depends will be clear from the context.
If x;y 2 hAi and jxj+ jyj= jxyj, we say that x is a left segment of xy. (Here we do not allow jxj= 0.)

If x;y;z 2 hAi and jxj+ jyj+ jzj = jxyzj, we say that y is a segment of xyz. (Here we do allow jxj = 0 or
jzj= 0.)
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In this section we prove the theorem for the case where T is a finite group. The proof is by a rather
curious contradiction. We deny the theorem and then apply a kind of sieve to produce an element whose
image under ϕ is not in the range of ϕ .

Lemma. Let T be a group with identity e and let ϕ : S 7! T be a homomorphism of the semigroup S onto

T such that eϕ�1 is locally finite. Let A be any finite subset of S and let m be any positive integer. Then

there exists an integer k = k(m;A) with the following properties: If x 2 hAi, jxj= km (length with repect

to A), and g 2 T , then x = P(g)Q(g)R(g), where P(g);Q(g);R(g) 2 hAi, jQ(g)j= m, and (P(g)U)ϕ 6= g

for every left segment U of Q(g).

Proof. Let x 2 hAi, jxj = km, x = A1A2 � � �Ak, Ai 2 hAi, jAij = m, 1 � i � k, g 2 T . We will show that
if k is taken large enough, then some Ai may be chosen as Q(g). For suppose the contrary. Then for
arbitrarily large k we can find x 2 hAi such that jxj = km, x = A1A2 � � �Ak, Ai 2 hAi, jAij = m, Ai =
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BiCi, jBij+ jCij = m, 1 � i � k, and (B1)ϕ = (B1C1B2)ϕ = � � � = (B1C1 � � �Bk�1Ck�1Bk)ϕ = g. Then
C1B2;C2B3; : : : ;Ck�1Bk 2 eϕ�1, and since jBij+ jCij= m, we have jCiBi+1j � 2m.

Now let H be the subsemigroup of eϕ�1 generated by the finite set

fy 2 hAi\ eϕ
�1 : jyj � 2mg:

Then H is finite since eϕ�1 is locally finite. Furthermore, H depends only on A and m. Thus there exists
a number M = M(A;m) such that

z 2 H ) jzj � M:

(Note we are still writing lengths with respect to the set A.)
The point of constructing H is that

W =C1B2C2B3 � � �Ck�1Bk 2 H;

hence jW j � M. But then

km = jxj= jB1WCkj � jB1j+ jW j+ jCkj � M+2m;

or (k�2)m � M.
Since M does not depend on k, this is a contradiction for sufficiently large k. This proves Lemma 2.

Lemma. Let T be a group with identity e, and let ϕ : S 7! T be a homomorphism of the semigroup S

onto T such that eϕ�1 is locally finite. Let V � T , g2 T , g =2V . Let A be a finite subset of S, and suppose

that x 2 hAi, x = P1Q1R1, where Q1 2 hAi, jQ1j= k(m;A):m (see Lemma 2), and (P1U1)ϕ =2V for every

left segment U1 of Q1.

Then x = P1P2Q2R2R1, where Q2 2 hAi, jQ2j = m, and (P1P2U2)ϕ =2 V [fgg for every left segment

U2 of Q2.

Proof. Let h = (Pϕ)�1g. Since jQ1j= k(m;A):m, by Lemma 2 we have Q1 = P2Q2R2, where Q2 2 hAi,
jQ2j = m, and (P2U2)ϕ 6= h for every left segment U2 of Q2. Now if U2 is a left segment of Q2, then
P2U2 is a left segment of Q1, therefore by the hypotheses of the present lemma (P1P2U2)ϕ =2 V . But
also (P1P2U2)ϕ 6= g, for otherwise we would have (P2U2)ϕ = (P1ϕ�1)g = h, a contradiction. Therefore
(P1P2U2)ϕ =2V [fgg, as required.

Lemma. Let T be a finite group with identity e, and let ϕ : S 7! T be a homomorphism of the semigroup

S onto T such that eϕ�1 is locally finite. Then S is locally finite.

Proof. Let T have n elements fg1; : : : ;gng. Let A be a finite subset of S. In the notation of Lemma 2,
let k0 = 1;k1 = k(k0;A), k2 = k(k0k1;A); : : : ; kn = k(k0k1 � � �kn�1;A). We shall show that x 2 hAi implies
jxj< k0k1 � � �kn. This of course means that hAi is finite, and so S is locally finite.

To prove our assertion, suppose x 2 hAi, jxj � k0k1 � � �kn�1kn. We may as well assume that jxj =
k0k1 � � �kn�1kn. Then

jxj= kn:(k0k1 � � �kn�1) = k(k0k1 � � �kn�1;A):(k0k1 � � �kn�1);
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so by Lemma 2 x = P1Q1R1, where Q1 2 hAi, jQ1j = k0k1 � � �kn�1, and (P1Q1)ϕ 6= g for every left
segment U1 of Q1.

Now suppose we have x=P1 � � �PmQmRm � � �R1, where Qm 2 hAi, jQmj= k0k1 � � �kn�m = kn�m:(k0k1 � � �kn�m�1)=

k(k0k1 � � �kn�m�1;A):(k0k1 � � �kn�m), and

(P1 � � �PmUm)ϕ =2 fg1; : : : ;gmg

for every left segment Um of Qm.
We now use Lemma 2 to sieve out the element gm+1, and obtain

x = P1 � � �Pm+1Qm+1Rm+1 � � �R1;

where Qm+1 2 hAi, jQm+1j= k0k1 � � �kn�m�1, and (P1 � � �Pm+1)ϕ =2 fg1; : : : ;gm+1g for every left segment
Um+1 of Qm+1.

Thus after n steps we have x = P1 � � �PnQnRn � � �R1, where Qn 2 hAi, jQnj = k0 = 1 (so that Qn has
exactly one left segment, namely Qn), and (P1 � � �PnQn)ϕ =2 fg1; : : : ;gng = T . Since ϕ is after all a
mapping of S into T , this is a contradiction, and completes the proof.
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We now consider the cases wherer T is either a finite group with zero or a finite null semigroup.
Let S;ϕ;T be as in the theorem, and suppose also that T is a finite group with zero. Let A =

(T n f0g)ϕ�1; then A is locally finite by Lemma 2. Also, by assumption, B = 0ϕ�1 is locally finite.
Thus we have S = A[B, where A;B are locally finite and B is an ideal in S. It is easy to see in this case
that S is locally finite. In the case that T is a finite null semigroup, again letting B = 0ϕ�1, we have
that B is a locally finite ideal in S and S2 � B. Here again it is easy to see that S is locally finite. We
summarize these cases as

Lemma. Let T be either a finite group with zero or a finite null semigroup, and let ϕ : S 7! T be a

homomorphism of the semigroup S onto T such that eϕ�1 is locally finite for each idempotent element e

of T . Then S is locally finite.
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In this section we consider the remaining cases, where T is either a (finite) simple semigroup or 0-simple
semigroup.

Let T be a finite simple of finite 0-simple semigroup. Then T is completely simple or completely
0-simple, and it follows in a standard way ( [3]) that if a;b 2 T and TabT 6= f0g, then bTa is a finite
group or a finite group with zero. This fact will be used in what follows.

The next lemma is a variation on Lemma 2. Its proof is briefly sketched.

Lemma. Let T be a finite simple or finite 0-simple semigroup, and let ϕ : S 7! T be a homomorphism

or the semigroup S onto T such that eϕ�1 is locally finite for each idempotent element e of T . Let A be

4



any finite subset of S and let m be any positive integer. Let a;b be element of A such that jabj = 2 and

T ((ab)ϕ)T 6= f0g. Then there exists an integer k = k(ab;m;A) with the following properties: If x 2 hAi,

jxj= km, then x = PQR where Q 2 hAi, jQj= m, and ab is not a segment of Q.

Proof. Assume the contrary. Then for arbitrarily large k we can find x 2 hAi such that jxj = km, x =

A1A2 � � �Ak, Ai 2 hAi, jAij= m, Ai = B1abCi, jBij+2+ jCij= m, 1 � i � k. Thus x = B1aybCk, where

y =
k�1

∏
i=1

(bCiBi+1a):

Let G = (bϕ)T (aϕ). Then G is a finite group or a finite group with zero, and so Gϕ�1 is locally finite
by Lemmas 2 and 3. But y belongs to a finitely generated subsemigroup of Gϕ�1, hence jyj is bounded
above by a number which depends only on a;b;m; and A, hence jxj is similarly bounded. For sufficiently
large k this contradicts jxj= km.

Lemma. Let T be a finite simple or finite 0-simple semigroup. Let ϕ : S 7! T be a homomorphism of the

semigroup S onto T such that eϕ�1 is locally finite for each idempotent element e of T . The S is locally

finite.

Proof. Let A be a finite subset of S. Let

B = fxy : x;y 2 A; jxyj= 2;T ((xy)ϕ)T 6= f0gg;

C = fxy : x;y 2 A; jxyj= 2;T ((xy)ϕ)T = f0gg;

D = fa1b1; : : : ;apbpg:

(Note that if T is simple then C is empty.)
We now assume that hAi is infinite and proceed in two steps:
(i) We show that hAi must contain elements of arbitrarily large lengths which contain no element of

B as a segment.
(ii) Using (i), we obtain a contradiction.
(i) Let m be an arbitrary positive integer. Using the notation of Lemma 4, let

k0 = m; k1 = k(a1b1;k0;A);

k2 = k(a2b2;k0k1;A); : : : ;

kp = k(apbp;k0 � � �kp�1;A):

By finite induction, as in Lemma 2, it follows that if x 2 hAi, jxj= k0 � � �kp, then x contains a segment R,
R 2 hAi, jRj= m, such that no element of B is a segment of R.

(ii) First suppose that T is simple, so that C is empty. By (i), setting m = 2, there is R 2 hAi, jRj= 2,
such that R contains no element of B as a segment, that is R =2 B. But R 2 B[C, and C is empty. This
case is finished.

Now suppose that T is 0-simple. By (i), for arbitrarily large m we have R 2 hAi, jRj = m, and no
element of B is a segment of R. Then we can write R= R0y, where y=∏

t
i=1(xiyiziwi), R0 2 hAi, jR0j< 4,

xi;yi;zi;wi 2 A, jyizij= 2, 1 � i � t.
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Then yizi 2C, or T ((yizi)ϕ)T = f0g, therefore in particular (xiyiziwi)ϕ = 0. Hence y is an element
of a finitely generated (hence finite) subsemigroup of the locally finite semigroup 0ϕ�1, and so jyj is
bounded above. This contradicts the statement that jRj is not bounded above. This finishes Lemma 4,
and the proof of the main theorem is complete.
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In this section we are concerned with bands of locally finite semigroups. Suppose that a semigroup S is
the disjoint union of certain subsemigroups Sα (α 2 I), I an index set. Suppose further that for any pair
α;β , of elements of I there is an element γ in I such that Sα Sβ � Sγ . Then S is a bnad of the semigroups
Sα . Evidently I becomes an idempotent semigroup if we define αβ = γ if and only if Sα Sβ � Sγ , and
ϕ : S 7! I is a homomorphism, where xϕ = α if x 2 Sα . S is then called an I-band of the semigroups Sα .
If each Sα is locally finite, then S is called simply an I-band of locally finite semigroups.

Several people ( [4, 5, 7]) have shown idependently that an idempotent semigroup is locally finite.
Thus from this and our main theorem follows the important result of Shevrin [8].

Theorem. Any band of locally finite semigroups is locally finite.

The author received in a personal communication from B. M. Schein an extremely short and direct
proof of Shevrin’s theorem which is outlined as follows: Let A be the two-element right zero semigroup,
let B be the multiplicative semigroup f0;1g, let C be a right zero or left zero semigroup, let D be a
rectangular band, and let E be a semilattice. It is shown that an X-band of locally finite semigroups is
locally finite, where X is successively A;B;C;D;E; and Shevrin’s theorem then follows since any band
of locally finite semigroups is an E-band of D-bands of locally finite semigroups ( [2, 3, 6]).

It is also true that any semigroup which is the union of disjoint locally finite groups is an E-band of
D-bands of locally finite groups, and thus we have the next theorem.

Theorem. A semigroup which is the union of locally finite groups is locally finite.

From this follows the theorem of Green and Rees ( [1, 4]) on the equivalence of Burnside’s problem
for groups with “Burnside’s problem for semigroups":

Theorem. The following two statements are equivalent:

(1) Every group of exponent n is locally finite.

(2) Every semigroup satisfying the identity xn+1 = x is locally finite.
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