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Abstract

A 2-coloring of the non-negative integers and a function h are given such that if P is any monochro-

matic arithmetic progression with first term a and common difference d then jPj � h(a) and jPj � h(d).

In contrast to this the following result is noted. For any k, f there is n = n(k; f ) such that whenever n

is k-colored there is a monochromatic subset A of n with jAj > f (d), where d is the maximum of the

differences between consecutive elements of A.

1 Introduction

Paris and Harrington [5] have shown that the following simple modification of the finite version of
Ramsey’s theorem, which can be deduced from the infinite version by a diagonalization argument, is not
provable in Peano’s first order axioms, even in the case where f is the identity function: Let r;k 2 ω ,
f 2 ωω be given. Then there is n = n(k;r; f ) such that whenver [n]r is k-colored there is a subset A of n

with [A]r monochromatic and jAj> f (a0), where a0 is the smallest element of A.
It seems natural to ask whether van der Waerden’s theorem on arithmetic progressions can be mod-

ified in the sam way. That is, given k 2 ω , f 2 ωω , must there exist n = n(k; f ) such that whenever n

is k-colored there is a monochromatic arithmetic progression P = fa;a+ d;a+ 2d; : : :g contained in n

such that jPj> f (a) or jPj> f (d)?
Fact 1 below shows that this question has a negative answer. In contrast to this we quote a result

(Fact 3) which shows that if “arithmetic progression with common difference d" is replaced by “set with
maximum difference between consecutive elements equal to d" then the corresponding question has an
affirmative answer (Furthermore, this result has a simple inductive proof.)

2 The nagative result concerning arithmetic progressions

Fact 1. There is a 2-coloring of ω and a function h such that if P = fa;a+d; : : :g is any monochromatic

arithmetic progression then jPj � h(a) and jPj � h(d).

In what follows, the notation z̄ will be used for the fractional part of z, i.e., z̄ = z� bzc for real
numbers z. Intervals in ω of the form [2k;2k+1) (as well as the set f0g) will be referred to as “blocks."
Three obvious lemmas will be used.
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Lemma. If n multiples of d0 are contained in [2k;2k+1) then at least 2n�1 multiples of d0 are contained

in [2k+1;2k+2).

Lemma. Given integers a� 0 and d � 2, let d0 = 2p+1d if a 2 [2p;2p+1), d0 = d if a = 0. Then for each

m 2 ω , both md0 and a+md0 belong to the same block.

Lemma. Let x;y be real with y irrational. Let n;s; t 2 ω with n � 2, s � 2n� 1, t � 2s� 1. Let

S1 = fx+my : m 2 [0;n)g, S2 = fx+my : m 2 [n;n+ s)g, S3 = fx+my : m 2 [n+ s;n+ s+ t)g. Then it

is impossible to have simultaneously S1 � [0;1=2), S2 � [1=2;1), S3 � [0;1=2). (The same conclusion

hods if [0;1=2) and [1=2;1) are interchanged.)

Now we define a “preliminary 2-coloring of ω . Let α > 0 be fixed and irrational, and define c1 :
ω 7! f0;1g by c1(n) = 0 if nα 2 [0;1=2), c1(n) = 1 if nα 2 [1=2;1). Suppose that P = fa;a+d; : : :g is
a monochromatic (with respect to c1) arithmetic progression with common difference d (and first term
a). It follows immediately from the density in [0;1] of the set fmdα : m 2 ωg (and from the density in
[0;1] of any translate of this set by aα (modulo 1)) that there is f (d) such that jPj � f (d), independent
of a.

We are now ready to define the 2-coloring c : ω 7! f0;1g whose existence is asserted in Fact 1. The
colroing c is obtained by starting out with the coloring c1 and then “reversing" this coloring on alternate
blocks. That is, let c2(n) = 1�c1(n) and define, for n 2 [2k;2k+1), c(n) = c1(n) if k is odd, c(n) = c2(n)

is k is even. (Set c(0) = c1(0) = 0.)
Let P = fa;a+ d; : : :g be any arithmetic progression which is monochromatic with respect to the

coloring c. We show first that jPj is bounded by a function of d, and then that jPj is bounded by a
function of a.

To show that jPj is bounded by a function of d, let f (d) be as above and choose k so that 2k �

d f (d)< 2k+1. If P intersects both [0;2k+1) and [2k+2;∞), the block [2k+1;2k+2) will contain more than
f (d) consecutive terms of P. (This follows from Lemma 2 and f (d)� 2.) Since c agrees on [2k+1;2k+2)

with either c1 or c2, this contradicts the definition of f (d). Hence either P � [2k+1;∞) or P � [0;2k+2).
In the first case one gets jPj � 2 f (d), and in the second case jPj � 2k+2=d +1 � 4 f (d)+1.

Next, to show that jPj is bounded by a function of a, we shall derive a contradiction by assuming that
jPj � 32 �2p+1 +1 if a 2 [2p;2p+1) and jPj � 33 if a = 0.

Let d0 be as in Lemma 2, and consider the progressions P0 = fa+ d0;a+ 2d0; : : : ;a+ 32d0g, P00 =

fd0;2d0; : : : ;32d0g. Choose k so that 2k � 4d0 < 2k+1, and let A = [2;2k+1), B = [2k+1;2k+2), C =

[2k+2;2k+3). We say that 4d0 belongs to “block A." Now 2d0 2 [2k�1;2k), hence (applying Lemma 2
if necessary) it is clear that block A contains n consecutive elements of P00, where n � 2. Since by
Lemma 2 the elements of P0 are distributed among the various blocks in exactly the same way as are
the corresponding elements of P00, we obtain that the blocks A;B;C contain respectively n;s; t elements
of P0, where n � 2, s � 2n� 1, t � 2s� 1. (Note that the progression P0 extends beyond block C since
2k+3 � 32d0.)

Now let a+ ud0 be the first element of P0 \ (A[B[C), and let x = (a+ ud0)α , y = d0α . Since
P0 is monochromatic with respect to c, the first n terms, next s terms, next t terms, of the sequence
(x;x+ y;x+2y; : : :) must be contained respectively in the intervals [0; 1

2 ), [
1
2 ;1); [0;

1
2 ) (or in [ 1

2 ;1), [0;
1
2 ),

[ 1
2 ;1)), finally contradicting Lemma 2.

This completes the proof of Fact 1; for the function h we can take h(x) = maxf4 f (x)+1;64xg.
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3 The positive result concerning sets with given gap size

Although the results noted here are not new, Fact 3 provides an interesting contrast to the negative result
above. The proofs are omitted. Fact 3, the finite version of Fact 2, can be proved by a simple induction
on the number of colors.

Let A = fa1; : : : ;amg be a finite subset of ω , with a1 < � � � < am. Define gs(A), the “gap size" of A,
by gs(A) = maxfa j+1�a j : 1 � j < mg if jAj> 1 and gs(A) = 1 if jAj= 1.

Fact 2. Let k 2 ω and a k-coloring of ω be given. Then there exist d 2 ω and arbitrarily large (finite)

monochromatic sets A with gs(A) = d.

Fact 3. Let k 2 ω , f 2 ωω be given. Then there is n such that if n is k-colored there is a monochromatic

subset A of n with jAj> f (gs(a)).

We remark that if n(k; f ) is the smallest such n, then n(1; f )� 1+ f (1) and n(k; f )� 1+ k f (n(k�

1; f )). (Letting e denote the identity function, this gives n(k;e)� k!(1+1=1!+ � � �+1=k!), while in fact
n(k;e) = k2 +1; hence the above bound is far from best possible.)

Acknowledgements. The author is grateful to Paul Erdős and Bruce Rothschild for suggesting the
present 2-coloring or ω , which greatly improved his original 4-coloring, which in turn was based on
an idea of I. Connell and N. Mendelsohn [4]. Fact 3 was first noted by J. Justin [3] as the finite version
of Fact 2 [1].

Note added in proof. The author completely overlooked Justin’s very different construction ( [3]–
long before the Paris and Harrington result) of a 2-coloring of ω such that any arithmetic progression P

with common difference d has jPj bounded by a function of d, namely, for each n � 1, let n! = 2tq, q

odd, and define c(n) = 0 if t is even, c(n) = 1 if t is odd.
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