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Abstract

Fors>2,t>1,letAy,...,A, be s-cell partitions of a finite set X. Assume that if x,y € X, x # y,
then x,y belong to different cells of at least one of the partitions A;. For each k > 1, let ¢(s,t,k) be
the least integer such that if Ay,...,A;, X satisfy the preceding conditions, and the smallest of all the
cells of all the partitions has exactly k elements, and |X| > c(s,?,k), then Ay,...,A; have a common
transversal. The functions b(s,7,k) are defined analogously, except that now the smallest of all the cells
of all the partitions is only required to have at least k elements. Thus b(s,z, 1) involves no restriction
on the sizes of the cells of the partitions. Note that b(s,7,1) = max{c(s,#,k) : k > 1}.

‘We show, using essentially the method of Longyear [4], that

M e(s,t, 1) =5~ — (s 1)1 42,5 >2, 1> 1, (s,1) # (2,2);

2)c(s,3,5—1) >3 =2 —(s—1)245,5>2,t=3;

(3) c(s,t,(t — )(s— 1)f—2) >(t—1)(t=2)(s—1)24s(s—1)""+1,s>2,>3,s>1-2;

4) b(s,2,[(s+1)/2]) =0,s>2,t=2;

(5) c(s,t,8F) > s =5 k(s = 1) F 4k 1,5 >2, k>0, > k+2.

1 Introduction and definitions

The functions b(s,t,k) (defined above) were introduced by Longyear in [4], who showed, among other
results, that b(s,2,1) = s> —2s+3, s > 3.

The present author’s primary interest is in the determination of the values of the function b(s,z,1).
In this note we give a number of partial results in this direction, mostly in the form of lower bounds
obtained by various constructions. The exact values of b(s,,1), s > 2, however, are still unknown for all
t>3.

Throughout, Ay, ...,A; denote partitions of a finite set X, where each partition has s cells, s > 2. We
also assume that the partitions A1, ...,A; separate points of X in the sense that if x,y € X, x # y, then x,y
belong to different cells of at least one of the partitions A;.

For each i, 1 <i <t, we order the cells of A; so that A; = (A(i,1),...,A(i,s)). Let P(s,7) be the set
of all z-tuples a; - - - a;, where each coordinate g; is a member of {1,...,s}, 1 <i<zt.

Now define a mapping g from X into P(s,7) by setting, for each x € X,

gx)y=ar-a, x€A(l,a;)N---NA(t,a).



Then, since Ay,...,A; separate the points of X, the mapping g is injective. Also, for 1 < i <,
1<j<s,
A(i, j) = {x € X : the ith coordinate of g(x) is j},

so that the partitions Ay, ...,A; can be recovered from g(X).

Hence, from now on we shall identify X with g(X), and work entirely with subsets of P(s,t). This
idea is due to Longyear.

Recall that a transversal of A; is a set T of s elements of X, one element from each of the s cells of
A;. A common transversal of Ay,...,A; is a set T of s elements of X such that T is a transversal of each
A, 1<i<t.

A complementary set is a set D of s elements of P(s,) such that for each i, 1 <i <1, the ith coordi-
nates of the elements of D run through {1,...,s} in some order.

Note that the s-cell partitions Ay,...,A; of X have a common transversal if and only if the subset
g(X) of P(s,t) contains a complementary set. Hence the functions c(s,,k) and b(s,z,k) defined above
can be described as follows:

Let s,z be given, s > 2, ¢ > 1. For a subset Q of P(s,t) and any i, j, where 1 <i<7, 1< j<s,let
q(a; = j) be the number of elements of Q whose ith coordinate is j.

Then c(s,t,k) is the smallest integer with the following property. If Q is any subset of P(s,t) such that
|Q| > ¢(s,t,k) and such that k = min{g(a; = j) : 1 <i<t,1 < j <s}, then Q contains a complementary
set. Similarly, b(s,¢,k) is the smallest integer such that if Q is any subset of P(s,7) such that |Q| > b(s,t,k)
and such that

k<min{g(a;=j):1<i<t,1 <j<s},

then Q contains a complementary set.

Note that c(s,,k) is defined only for k > 1 (or else we may take c(s,7,0) = |P(s,t)| + 1), whereas
b(s,t,k) is defined for all k > 0.

Also note again that b(s,,k) > c¢(s,t,k) and that b(s,7, 1) = max{c(s,t,k) : k > 1}.

2 Results

The following lemma, which follows from simple counting, will be used repeatedly.

Lemma 1. The set P(s,t) contains s\'~" complementary sets altogether, each element of P(s,t) belongs
to (s —1)1""! complementary sets, and each compatible pair of elements of P(s,t) belongs to (s —2)!'~!

complementary sets.

Theorem 1. (Longyear [4]). Fors >2,t > 1,
b(s,t,0)=s" —s"1+1.

Proof 1. (Longyear [4]). Let Q be a subset of P(s,) with |Q| > s’ —s'~ ! + 1. Let B= P(s,t) — Q. Then

1t—1

|B| < s'~! —1, so by Lemma | B can intersect at most |B|(s — 1)!"~! complementary sets, and hence Q



contains a complementary set. This shows that b(s,,0) < s —s'~! + 1. Now let Q = P(s,t) — B, where
B={a;---a; € P(s,t) :a1 = 1}.

Then Q contains no complementary set, hence
b(s,1,0) > Q| +1 =5 -5 4+1. O

Proof 2. We use induction on ¢, the case t = 1 being trivial. Assume the result for a givent > 1, and let O
be a subset of P(s,t + 1) with |Q| > s'*! —s' + 1. Foreachh, 0 < h < s—1,let B, = {a;---a;a,+1 € Q:
a1 —a; = h (mod s)}. Then Q is the disjoint union of the sets By, hence (re-numbering if necessary) we
may assume that |[Bo| > s —s' !+ 1. Now let O’ = {a;---a, : a1 ---a,a, € By}. Since |Q'| = |By|, the in-
duction hypothesis implies that Q' contains a complementary set D'. Then Q contains the complementary
set D={a;---a;a; € D'} O

Theorem 2. Fors>2,1t>1, (s,1) # (2,2),
c(s,0,1) =5 —s" P —(s—1)" 1 +2.

Proof. When ¢ = 1 there is nothing to prove. Hence assume that 7 > 2 and let Q be a subset of P(s,?)
such that |Q| > s’ —s'~! — (s — 1)"~! +2 and such that I = min{g(a; = j): 1 <i<t,1 < j<s}, where,
as before, g(a; = j) is the number of elements of Q whose ith coordinate is j. Let B = P(s,t) — Q, and
assume without loss of generality that 1 = g(a; = 1), and that B = B; U By, where B; = {a;---a; €
P(s,t):ay=1}—{11---1} and B = B—B;. Now |B| < s '+ (s—1)'"! =2, and |B|| = s~ — 1, s0
|By| < (s—1)"~1 — 1. The set B meets every complementary set in P(s,) except for the (s — 1)!"~!
complementary sets which contain the ¢-tuple 11---1. The set B, can meet at most |By|(s —2)!""! of
these. (The complementary sets containing 11---1). Since |Ba|(s —2)!" ! < (s — 1)1/, it follows that
Q contains a complementary set, and hence that c(s,,1) < s —s'~! — (s — 1)'~1 42.

For the reverse inequality let QO = P(s,t) — (B; UBy), where Bj is as above and
By={aj--a; € P(s,t):a1 =2,a; #1,2<i<t}.
Then By U B, meets every complementary set, hence Q contains no complementary set, and 1 = g(a; =

1) =min{g(a; = j) : 1 <i <t,1 < j<s} (except in the single case s = = 2, when g(a, = 2) = 0).
Therefore c(s,2,1) > [Q|+ 1 =5 —s'"1 —(s— 1)1 42,5 >2,t > 1, (5,¢) # (2,2). O

Remark. For the case 7 = 2, Longyear showed using Hall’s theorem [2] that b(s,z,1) = s> — 25 + 3,
s > 3. Thus (checking the case s = r = 2 separately, where we find b(2,2,1) =2 =¢(2,2,1))

b(s,2,1) =c(s,2,1), s>2.
Theorem 3. Fors>2,1t=3,

c(s,3,5—1) >3 =5 —(s—1)2 +s.



Proof. Let Q be the set of all triple of the form las1,a;11,a1a;b, where2 <a; <s,2<a; <s,1<b<s.
Then Q contains no complementary set and s — 1 = a(a; = 1) = min{g(a; = j) : 1 <i<3,1 < j <s},
hence c(s5,3,5 — 1) > [Q|+1=2(s— 1)+ (s— )25+ 1=5> -5 — (s—1)> +=. O

Remark. Since b(s,3,1) > c(s,3,5—1), and s> — s> — (s — 1)* +5=c(s,3,1) + (s—2), Theorem 3 gives
b(s,3,1) > ¢(s,3,1) + (s —2). Thus b(s,3,1) > c(s,3,1), s > 2. This is the only known case where
b(s,t,1) > c(s,t,1).

Theorem 4. Fors>2,t>3, s>1t—2,
(5.1, (1=2) (s =27 2 (1= D =D (6= 1) s(s= 1)~ +1.

Proof. We generalize the contruction used in Theorem 3. Let Q be the set of all #-tuples of the form
lazaz---a;_\b,aylaz---a,_1b,ajaxlag---a; b, ...,a1a2---a,_»1b,ayay -+ -a;_»a,_1c, where 2 < ay, ..

s, 1 <b<t—2,1<c<s. Then Q contains no complementary set and it is easy to check that
(1=2)(s=1)? =glar = 1) =min{g(gi = j) : 1 <i<1,1 < j <5},
hence
c(s,1,(t=2)(s=2)"" D) > 0|+ 1= —-1)(t=2)(s— 1) 2 4+s(s— 1)1 4+1. O

Corollary. Setting s =t gives
(5,5, (s =22 >2(s—1)*+1, s>3.

Theorem 5. Fors > 2,
b(s,2,[(1/2)(s+1)]) = 0.

(That is, if Q is any subset of P(s,2) with g(a; = j) > (1/2)(s+ 1), 1 <i <2, 1 < j <s, then Q contains

a complementary set.)

Proof. The s x s 0-1 matrix corresponding to Q has at least (1/2)(s+ 1) 1’s in each row and column.
Any collection of s — 1 rows and columns must contain fewer than (1/2)(s+ 1) rows or fewer than
(1/2)(s+ 1) columns, and hence cannot cover all the 1’s. Hence by Konig’s theorem, there are s 1’s, no
two in the same row or column, and therefore Q contains a complementary set. (An alternative proof can

be given using Hall’s theorem.) O

Remark. For 1 <k < [(1/2)(s—1)], let Ok be the subset of P(s,2) consisting of all pairs ab, cd, where
1<a<k+1,1<b<k k+2<c<s,1<d<s. This construction shows that c(s,2,k) > |Qx| +1 =
(k+1)k+(s—k—1)s+ 1. (For k =1, s # 2, equality holds by Theorem 2.)

Theorem 6. Fors>2,k>0,t>k+2,

c(s,1,8%) > =5 sk (s— 1) k4,

<y ar—1 S



Proof. When k = 0 equality holds by Theorem 2. Hence assume k > 1, and let B = B; U B>, where

Bi={a1---a;€P(s,t):ar=1}—{a1---a, €P(s,t) ca1=---=a,_ =1}
By=A{ai---a, € P(s,t) a1 =2,aa,--- ,a,_y # 1}.

Then B; meets every complementary set in P(s,?) except for those met by {a;---a, € P(s,t) :a; = --- =
a;—x = 1}, and each of these remaining complementary sets is met by By, therefore Q = P(s,t) — B
contains no complementary set. When ¢ > k + 2, it is straightforward to check that

s* =g(a1 =1)=min{g(a; = j): 1 <i<t,1 < j< s},
and hence

c(s,,8) > 10| +1=s =5 —sks— 1) 4 b1, s>2,k> 1,0 >k+2. O

3 Remarks, questions, and conjectures

(1) Perhaps Proof 2 of Theorem 1 could be modified so as to give a result concerning b(s,,k) for k > 0.

(2) The construction of Q in Theorem 6 seems very ‘efficient’. Perhaps equality holds for all k, and
not just for k = 0.

(3) The construction which gives b(s,3,1) > ¢(s,3,1), s > 2 (Theorem 3) fails to give b(s,z,1) >
c(s,t,1) for any ¢ > 3 (proof of Theorem 4). It would be interesting to know if # = 3 is any exceptional
case, or if b(s,t,1) > ¢(s,t,1), s > 2, for all # > 3. (If the latter holds, then r = 2 is an exceptional case.)

(4) Let Q(s) be the subset of P(s,s) constructed as in the proof of Theorem 4, with s =¢. Then
O(s) is a ‘homogeneous’ subset of P(s,s) in the following sense. For each i, j, call the set {a; --a; €
P(s,s) : a; = j} a hyperplane. Then for every hyperplane H(s) of P(s,s), either |Q(s) NH(s)| = (1/e+
o(1)|H(s)] or |O(s)NH(s)| = (2/e+0(1))|H(s)| (as s — o0). Note that |Q(s)| = (2/e+ 0(1))|P(s,s)|.

Conjecture. For every € > 0 there exists n(€) such that if s > n(€) and Q is any subset of P(s,s) such
that |ONH| > (1/e+ €)|H| for every hyperplane H of P(s,s), then Q contains a complementary set.

(5) Fors >2,t > 1, define d(s,1) to be the smallest integer 4 with the property that if Q is any subset
of P(s,t) such that # < min{g(a; = j) : 1 <i<1t,1< j<s}, then Q contains a complementary set. (In
terms of partitions and transversals, d(s,) is the smallest integer & with the property thatif Ay, ...,A, are
s-cell partitions of the finite set X which separate the points of X, and the smallest of all the cells in all
the partitions has at least /4 elements, then Ay,...,A; have a common transversal.)

Theorem 5 (and the Remark following) shows that d(s,2) = [(1/2)(s+ 1)]. It would be interesting
to find d(s,t), or any upper bound for d(s,t), for r > 2.

(6) Perhaps the most interesting of all the open questions is simply this: What is b(s,3,1)?

(7) Recently Livingston [3] has shown the following:

c(s, k) =sF—s P —(s— 1" Hk+1, 1<k<s—1,5>4,1>3,
c(s,t,k) =5 =5 —s(s— 1) 4k+1, s<k<s(s—1),



and either s >4 andt >4,ors=kand ¢t = 3.
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