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Abstract

The classical Mobius function appears in many places in number theory and in combinatorial the-
ory. Several different generalizations of this function have been studied. We wish to bring to the
attention of a wider audience a particular generalization which has some attractive applications. We

give some new examples and applications, and mention some known results.
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1 Introduction

We define a generalized Mobius function ug for each complex number o. (When o = 1, pu; is the
classical Mobius function.) We show that the set of functions py forms an Abelian group with respect
to the Dirichlet product, and then give a number of examples and applications, including a generalized
Mobius inversion formula and a generalized Euler function. Special cases of the generalized Mobius
functions studied here have been used in [6—8]. For other generalizations see [1,5]. For interesting

survey articles, see [2,3, 1 1].
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Let us recall that the classical Mobius function p(n) is defined for positive integers n in the following
way: (1) = 1. If n is not square free then p(n) = 0. If n is square free and r is the number of distinct
primes dividing n, then u(n) = (—1)" [9].

For any integer r, a Mobius function of order r may be defined by using binomial coefficients, namely

for each positive integer n,

where p runs through all the prime divisors of n, and d,,(n) = ord,n denotes the highest power k of p
such that p* divides n. Obviously p(n) = w(n). For more details, see [7].

We now define a generalized Mobius function L, for each complex number ¢, by setting

vl =TT () ) 17"

At the end of the paper, we mention a particularly interesting application of the case where « is real.

2 Group-theoretic properties

Recall that the classical Mobius function is multiplicative; i.e., if m and n are relatively prime, then
w(mn) = u(m)u(n). It is easily seen that the definition of pg implies that this property extends to the

Mobius function of order o, giving us the following lemma.
Lemma 1. For each complex number o, Uy is a multiplicative function.

Next, we recall the definition of the Dirichlet product (or convolution) of two arithmetic functions f
and g (cf. [1,4]).

Definition 1. Given two arithmetic functions f and g, the Dirichlet (convolution) product f * g is again

an arithmetic function which is defined by

(rx9)m =Y f@g (5) = X7 (5) @),

din din
where the summations are taken over all positive divisors d of n.

Evidently, the product is commutative: f*g = gx* f. Using a little algebra one easily shows that
the following associative law also holds: (f*g)*h = f (g h). That is, for all positive integers n,
((f*g)xh)(n) = (fx(gxh))(n). Moreover, the convolution f * g is a multiplicative function whenever
f and g are multiplicative functions.

Definition 2. Let
M={uy:aeC}

where C denotes the set of complex numbers. The set M may be called the set of generalized Mobius

Sunctions of complex order.



Lemma 2. For any given numbers o and 3 in C, we have

Mo * Ug = Ha4p

Proof. 1t is required to show that for all positive integers n,

(Mo xg)(n) =) Ha(d) (g) = lgp(n).
din

Since lg and pg are multiplicative (by Lemma 1), the Dirichlet product piq * fig is also multiplicative.

Thus, it suffices to consider the case n = p*, where p is prime and & is a positive integer. We easily find

k k
() 7) = X ity (5 ) = B el

d|p*

2( Jou(Z)er

=) = e,

since the relation (14 x)%(1 +x)P = (1 +x)**B implies

()=-5060)

Notice that g is the Mobius function of order zero that gives the values

0 o 1 =1,
Holr) :g<8p(n)>(_l)ap( ) _{ 0 n>1.

Let us denote py by 6. Since from Lemma 2 we have Uy *x 0 = 8 * g = U for all o, we call it the

||M»

identity element with respect to the Dirichlet product operation *.

We are now ready to show that M is an Abelian group.
Theorem 1. (M, x) is an Abelian group with identity element 6 = L.

Proof. By Lemma 2 we see that M is closed with respect to the operation . Moreover, we also have
Mo x g = pg*te  (0,B €C),

(“a*uﬁ)*uyzﬂa*(uﬁ*ﬂy) (a,ﬁ,'}’EC),
Po*8=0%Ug =g  Ha*M q=H q*lg=0 (axeC),

Thus, the theorem is proved. O



Of course, if G is any additive subgroup of C, then Mg = {Uq : & € G} is a subgroup of M.

3 Corollaries, examples and applications

Corollary 1. (Generalized Mébius inversion formulae).) For all oo € C and arithmetic functions f,g,

VneN f(n Z#a( ) ]

din

N gln) = L a (2) 1 ]

din

Proof. In fact, this is equivalent to the statement

f=Ulaxgog=U q*f,

which follows from
f=UHa*xgo U g*f=U g*llgxg=0xg=g.
]

Evidently, Corollary 1 with & = 1 implies the classical Mobius inversion formulae (f = uxg < g=
U—1 % f),since gy =pand u_; = 1:

m=T1( =" ) e =G0t
ot g(ap(n)>( 2 g(ap(n))z

Note here that the Mobius p-function and p—1 = 1 are inverses of each other under convolution.

Corollary 2. Foralln € Nand a € C,

Y Ha(d) = Ho1(n).

din

This is equivalent to the statement ({_ * Uy )(n) = Ug—1(n). Note that the case o@ = 1 gives the

classical identity of Gauss

) u(d) = po(n) = &(n).

din
Corollary 3. Let f be a completely multiplicative function such that f(mn) = f(n) f(m) for all positive

integers m and n, and let r be a positive integer. Then the r-times convolution of W, f with f satisfies
(rf) s foxfxex f = pof,

where (o f) (1) = pa(n) f(n)

This follows easily form Corollary 2 and induction on r. Indeed we have

() * ) = L) f@)f (5) = £ (L bld) = (1))

din



Moreover, it may be of interest to note that

poo(n) = (Horxp1)(n) =Y 1=1(n),

din

where 7(n) denotes the number of positive divisors of n. Thus, T = y_,. Consequently, from y_j * ) =

W—1 and t_p * Uy = Uy, we may obtain the identities
n n
%r(d)u (3) —1and dzlnr(d)ug (3) = §(n).

Example 1. Let 0,(n) denote the sum of the rth powers of the divisors of n. The well-known identity

v =Lutar (2

can be proved very simply in the following way. Let i,(n) = n". Then, since U_; = 1, we have i, l_| =

o,, and hence

r

(wxop)(n) = (W irx 1) (n) = (irx prxpa)(n) = (irx 8)(n) = ir(n) =n'".

Example 2. Euler’s Q-function may be written as ¢ = iy * l1]. Moreover, using T = [L_ we can easily

prove the identity

o)=Y e (5)-

din

In fact, these statements follow easily from the relations

o(m) =Y du (5) = (irxm)n)

din
and @xT= (i1 %) *U_p = i1 *U_| = O (see Example 1).

Example 3. Fix a positive integer r > 1, and define ¢, =iy ¥ U.. Then, if n is ‘r-powerful’, that is,

dp(n) > r for every prime divisor p of n, we have
l r
or(n) = nH (1 - p) .

This may be verified as follows:

n w(d) *(r 1/ 1\"
(p,(n):Zd,u,(E):nZ rd :nHZ Jl-= :nH 1——) .
din din pln j=0 J p pln p
Note that, if r = 1, then ¢; = ¢ is the classical Euler function. Thus, ¢, may be called the generalized
Euler function of order r. This function has a similar meaning to that of @, in that ¢, counts the number

of integers a, 1 < a < n, such that a is ‘rth-degree prime to n’. (This means that for each prime divisor



p of n, there are ag,ay,...,a,_; with0<a; <panda=ag+ap+---+a—_1p"~" (mod p").) Some
related details may be found in [8].

Example 4. The number of ordered factorizations of n into exactly k factors (see also [4, 13]) is

oI,

pln

Example 5. For any given integer k > 1 one may find a function o such that
n
o) =Y (%) onld).
din d

(For k =1, of course oy = i1.) Indeed, using the generalized Mobius inversion formula and Lemma 2
we obtain Qx = W_j * iy * [} = i1 * U1_k. A more explicit expression for ox(n) may also be obtained

(see [12,13]).

Example 6. Here we would like to mention a remarkable application of L. Rearick [10] has defined
the real power f% of an arithmetic function f with f(1) > 0, using his exponential and logarithmic
operators Exp and Log, as f* = Exp(aLogf). Here (Logf)(1) =log f(1) and

n

(Logf)(n) = (IOgn)’1 Zf(d)f(’l) (d

) logd forn>1,
din

where f (1) is the Dirichlet inverse of f, and Exp = (Log)~!. Recently Haukkanen [6] proved the
Sfollowing result: if f is a completely multiplicative function and o is a real number, then f* = u_qf.

This result shows that the representation problem for f* can be nicely solved by using L.
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