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1 Introduction

The “combinatorial line conjecture" states that for all q � 2 and ε > 0 there exists N(q;ε) such that if
n � n(q;ε), X is a q-element set, and A is any subset of Xn (= cartesian product on n copies of X) with
more than εjXnj elements (that is, A has density greater than ε), then A contains a combinatorial line.
(For a definition of combinatorial line, together with statements and proofs of many results related to
the combinatorial line conjecture, including all those results mentioned below, see [5]. Since we are not
directly concerned with combinatorial lines in this paper, we do not reproduce the definition here.)

This conjecture (which is a strengthened version of a conjecture of Moser [7]), if true, would bear the
same relation to the Hales-Jewett theorem that Szemerédi’s theorem bears to van der Waerden’s theorem.
In particular, it would imply Szemerédi’s theorem. The conjecture is known to be true for the case q = 2
(see [5] or [2]), as was first observed by R. L. Graham. A reward has been offered by Graham for a proof
or disproof of the conjecture for the case q = 3.

A natural weakening of this (apparently very difficult) conjecture is obtained by replacing the integer
q by a prime power q, the q-element set X by the q-element field Fq, the cartesian product Xn by an
n-dimensional vector space V over Fq, and “combinatorial line in Xn" by “affine line in V". (An affine
line is any translate of a 1-dimensional vector subspace; the purist will note that we only use the structure
of V as an affine space.)

We thus obtain the “affine line conjecture:" For every prime power q and ε > 0, there exists n(q;ε)

such that if n� n(q;ε), V is an n-dimensional vector space over the q-element field, and A is any subset
of V with more than εjV j elements (that is, A has density greater than ε), then A contains an affine line.

The affine line conjecture is known to be true for the cases q = 2 (trivial) and q = 3 ( [3]). In [4] it
is shown that if the affine line conjecture is true for a given fixed value of q, then it remains true for this
value of q when “affine line" is replaced by “k-dimensional affine subspace", for any k, and similarly for
the combinatorial line conjecture.

Szemerédi’s theorem [9] states that for each k and ε > 0, there exists n such that if A is any subset of
f1;2; : : : ;ng with more than εn elements (that is, A has density greater than ε), then A contains a k-term
arithmetic progression. Some 37 years prior to the proof of Szemerédi’s theorem, Felix Behrend [1]
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proved the following result: If Szemerédi’s theorem is false then there exist triples (k;n;A) such that A

is a subset of f1;2; : : : ;ng which contains no k-term arithmetic progression, n is arbitrarily large, and the
density of A in f1;2; : : : ;ng (= jAj=n) is arbitrarily close to 1.

In [2], the exact analogue of Behrend’s result was established in the context of the combinatorial line
conjecture: If the combinatorial line conjecture is false then there exist triples (X ;n;A) such that X is a
finite set, A is a subset of Xn which contains no combinatorial line, n is arbitrarily large, and then density
of A in Xn (= jAj=jXnj) is arbitrarily close to 1.

In the present paper we show that the exact analogue of Behrend’s result is true in the context of the
affine line conjecture: If the affine line conjecture is false then there exist triples (F;n;A) such that F is
a finite field, A is a subset of Fn (the n-dimensional vector space over F) which contains no affine line, n

is arbitrarily large, and the density of A in Fn (jAj=jFnj) is arbitrarily close to 1.
The proof is somewhat technical, and the exact result which we prove is following. Suppose that

the affine line conjecture fails for the finite field F . (That is, let jF j = q and suppose that n(q;ε) does
not exist for some ε > 0.) Then for every η < 1 and every n0 there is a subset A of a finite-dimensional
vector space V over a finite extension F 0 of F , where dimF 0 V � n0, such that A contains no affine line
and the density of A in V (= jAj=jV j) is greater than η .

The proof is basically a modification of the argument in [2], which in turn followed the lines of the
classical paper by Behrend [1].

2 Notation, definitions, and statement of the main theorem

Throughout, Fq denotes the q-element field.

Definition 1. For each prime power q and ε > 0, n(q;ε) denotes the smallest integer (if one exists)
such that if V is a finite-dimensional vector space over Fq, dim(V )� n(q;ε), A �V , jAj> εjV j, then A

contains an affine line.

For a fixed prime power q, consider the infinite array

m(q) = (d(n;k)) (n� 1;k � 1)

where the rows are indexed by n and the columns are indexed by k, and where d(n;k) is defined as
follows. Let V be an n-dimensional vector space over Fqk and let A be a subset of V that has maximum
cardinality subject to the condition that A contains no affine line. Then

d(n;k) = jAj=jV j:

In other words, d(n;k) is the smallest real number with the following property. If B is any subset of V

(V as above) with jBj> d(n;k)jV j, then B contains an affine line.

Remark. It follows directly from the preceding two sentences and the definition of n(q;ε) that for all
n;k,

n� n(qk;ε) if and only if d(n;k)� ε:
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We shall see below that each column of the array M(q) decreases. We define, for each k � 1,

γ(k) = lim
n!∞

d(n;k);

so that
d(1;k)� �� � � d(n;k)� �� � � γ(k):

We shall also see that for each row of M(q),

d(n;1)� d(n;2)� d(n;4)� �� � � d(n;2l)� �� � � 1;

so that
0� γ(1)� �� � � γ(2lk)� �� � � Γ(q);

where by definition
Γ(q) = lim

l!∞
γ(2l):

Theorem. Γ(q) = 0 or Γ(q) = 1.

Corollary. Suppose the affine line conjecture is false. In particular, suppose that n(q;ε) does not exist.

Let η < 1 be given. Then there exists an integer k and a subset A of a finite-dimensional vector space

V (of arbitrarily large dimension) over Fqk such that A contains no affine line and A has density greater

than η .

Proof of Corollary. We prove the contrapositive. We are assuming that (as is shown in Lemma 1 below)
d(n;k) decreases to γ(k) and that γ(2l) increases to Γ(q).

Now let q and η < 1 be given, and suppose that for each k � 1, if A is a subset of a vector space V

over Fqk with density greater than η , and dimV is sufficiently large, then A must contain an affine line.
In other words, we are assuming that n(qk;η) exists for all k� 1. We need to show that n(q;ε) exists for
all ε > 0.

Construct the array M(q) as above, and consider the entries d(n;k) in the kth column of M(q). Since
n(qk;η) exists then by the Remark above

d(n;k)� η for all n� n(qk;η):

Since d(n;k) decreases to γ(k), it follows that γ(k)� η , for each k� 1. In particular, γ(2l)� η for each
l; since γ(2l) increases to γ(q), it follows that Γ(q) � η < 1. By the theorem, we must have Γ(q) = 0
and hence γ(1) = 0.

Now let ε > 0 be given. Since d(n;1) decreases to γ(1) = 0, d(n;1)< ε for sufficiently large n, say
d(n0;1)< ε . Then using the Remark once more, we obtain n0 � n(q;ε). Thus, n(q;ε) exists.

3 Proof of the main theorem

Lemma 1. Fix q, and let the numbers d(n;k) be defined as above. Then

d(1;k)� �� � � d(n;k)� d(n+1;k)� �� �
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and

d(n;1)� �� � � d(n;2l)� d(n;2l+1)� �� � :

Proof. For the first part, let
dimFqk V = n+1

and let V0 be an n-dimensional subspace of V . Let

V =
[
fVα : α 2 Fqkg;

where the Vα are cosets (translates) of V0. Let A be a subset of V which has maximum cardinality subject
to the condition that A contains no affine line. Then A\Vα contains no affine line for each α , hence

d(n+1;k) � (qk)n+1 = jAj=∑ jA\Vα j � qk �d(n;k) � (qk)n:

For the second part, let F = F
q2l and let F 0 = F(β ), where β has degree 2 over F . Let

V = f(x1; : : : ;xn) : xi 2 Fg;

V 0 = f(x1+ y1β ; : : : ;xn+ ynβ ) : xi;yi 2 Fg;

so that V �V 0.
Let A be an affine-line-free subset of V with

jAj= d(n;2l)jV j;

and let A0 = A+βV . Then A0 is a subset of V 0, and A0 contains no affine line. For if u0;v0;u1;v1 2V and

(u0+ v0β )+F 0(u1+ v1β )� A0;

then
u0+Fu1 � A:

If u1 = 0, we use
β

2 = x1+ y1β ; x1;y1 2 F;x1 6= 0;

then A0 contains

(u0+ v0β )+Fβ (u1+ v1β ) = (u0+ v0β )+F(u1β + v1x1+ v1y1β ):

So A contains u0+Fv1.

We now fix some further notation which will be used in the remainder of the proof.

Definition 2. For any prime power q, V (q) = f(x1;x2 : : :) : x 2 Fq and xi = 0 for all but finitely many ig,
and

V (q)(m) = f(x1;x2; : : :) 2V (q) : x j = 0; j > mg:
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For any subset S of V (q),

S(m) = S\V (q)(m) and d̄(S) = limsup
m!∞

jS(m)j �q�m:

Lemma 2. If S � V (qk) and d̄(S) > γ(k) (where γ(k) is defined in terms of the array M(q))m then S

contains an affine line. (That is, S(m) contains an affine line for some m.)

Proof. Choose ε > 0 so that
γ(k)+ ε < jS(m)j �q�km

for infinitely many m. Next, choose n so that

d(n;k)< γ(k)+ ε:

Finally, choose m so that simultaneously

γ(k)+ ε < jS(m)j �q�km and n < m�n:

Assume that S contains no affine line. Then for each x 2V (qk)(n), S(m) can contain at most d(m�n;k) �

(qk)m�n elements whose first n coordinates agree with the first n coordinates of x. Hence

jS(m)j � (qk)n �d(m�n;k) � (qk)m�n:

Since d(m�n;k)� d(n;k)< γ(k)+ ε , this gives

γ(k)+ ε < jS(m)jq�km < γ(k)+ ε:

Lemma 3. For each t � 1, if S � V (qk) and d̄(S) > γ(kt) (where γ(kt) is defined in terms of the array

M(q)), then S contains a t-dimensional affine subspace.

Proof. Identify Fqkt with f(x1; : : : ;xt) : xi 2 Fqkg, so that

V (qkt) = f((x1; : : : ;xt);(xt+1; : : : ;x2t); : : :) : xi 2 Fqkg:

Let S �V (qk), d̄(S)> γ(kt). Choose ε > 0 so that

jS(m)j �q�km > γ(kt)+ ε

for infinitely many m. From amongst these m, choose a subsequence m0 < m1 < m2 < � � � such that all
the mi’s are congruent modulo t.

Let π : S 7!V (qk) be the mapping which shifts an element of S “m0 places to the left," i.e.,

π(x1; : : : ;xm0 ;xm0+1; : : :) = (xm0+1; : : :); :

For any T � S, let T 0 denote π(T ).
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For each x = (x1; : : : ;xm0 ;0; : : :) 2V (qk)(m0), let

Sx = fy = (y1; : : :) 2 S : yi = xi;1� i� m0g:

Then S is the disjoint union
S =
[
fSx : x 2V (qk)(m0)g:

Therefore for each i� 1,

∑
x
jSx(ml)j= jS(mi)j> akmi(γ(kt)+ ε):

Hence for some xi 2V (qk)(m0);

jS0xi
(mi�m0)j= jSxi(mi)j � q�km0 jS(mi)j

> qk(mi�m0)(γ(kt)+ ε):

Since each xi comes from the finite set V (qk)(m0), there is an infinite subsequence fmi jg of fmig on
which xi j is constant, say xi1 = xi2 = � � �= x0. Set

n j = mi j �m0; j � 1:

Then each n j is a multiple of t, say

n j = tb j and jS0xo(n j)j> qkn j(γ(kt)+ ε); j � 1:

We now inject Sx0 into V (qkt) by insertion of parentheses, that is, we define g : Sx0 7!V (qkt) by

g(x1; : : :) = ((x1; : : : ;xt);(xt+1; : : : ;x2t); : : :):

Then for each j � 1,

jg(S0x0
)(b j)j= jS0x0

(tb j)j= jS0x0
(n j)j> (qkt)b j(γ(kt)+ ε):

This means that in V (qtk),
d̄(g(S0x0

))> γ(kt):

Here, γ(kt) is the limit down the (kt)th column of the array M(q), which is identical with the kth column
of the array M(qt). Thus

g(S0x0
)�V ((qt)k)

and
d̄(g(S0x0

))> γ(k)

(where γ(k) is defined in terms of the array M(qt)). Hence by Lemma 2 g(S0x0
) contains an affine line.

This affine line (the underlying field is Fqkt ) is easily seen to be the image under g of a t-dimensional
affine subspace of S0x0

(where the underlying field if Fqk ). From the definition of S0x0
it follows that S

6



itself contains a t-dimensional affine subspace.

Lemma 4. There exists S � V (qk) such that d̄(S) = γ(k) (where γ(k) is defined in terms of the array

M(q)) and such that S contains no affine line.

Proof. Choose 0 = n0 < n1 < � � � so that ni�ni�1 ! ∞ as i ! ∞. For i � 1, let Ai �V (qk)(ni) be such
that Ai contains no affine line,

jAij= aknid(ni;k) and 0 =2 Ai:

(If L is some fixed affine line V (qk)(ni) and A �V (qk)(ni) contains no affine line, then for some a 2 L,
a+A does not contain 0.) Let

Bi = Ai�V (qk)(ni�1) and S =
[

Bi; i� 1:

Then
jS(ni)j � jBij � jAij�qkni�1 = qknid(ni;k)� (qk)ni�1�ni ;

hence
d̄(S)� γ(k) = lim

t!∞
d(ni;k):

The sets Bi are pairwise disjoint, and if x= (x1; : : :)2 S and j is the largest index with x j 6= 0 then x 2 Bi,
where ni�1 < j � ni.

Suppose that S contains the affine line u1; : : : ;uqk . Choose i0 minimal so that u1; : : : ;uqk 2 B1[ �� �[

Bi0 . Then there are us and j, ni0�1 < j � ni0 , such that the jth coordinate of us is not zero. Since the jth
coordinates of u1; : : : ;uqk are either constant or are some permutation of Fqk at least qk�1 of u1; : : : ;uqk

are contained in Bi0 . Suppose u1 =2 Bi0 . Let j0 be the largest index such that the j0th coordinate of u1

is not zero. ( j0 exists since u1 6= 0.) Then j0 < ni0�1, and hence the j0th coordinates of u2; : : : ;uqk are
all zero. But since u1; : : : ;uqk are an affine line, then the j0th coordinates are either constant or are a
permutation of Fqk .

Thus we have arrived at a contradiction (except in the case qk = 2) and therefore S contains no affine
line. (When qk = 2, then γ(1) = 0. Any singleton set S= fxg�V (2) has d̄(S) = 0= γ(1), and S contains
no affine line.) Since d̄(S)� γ(k), Lemma 2 gives d̄(S) = γ(k):

We now have necessary machinery to prove the main theorem. Recall that for a prime power q, M(q)

is the array
((d(n;k)); γ(2l) = lim

n!∞
d(n;2l); Γ(q) = lim

l!∞
γ(2l):

Theorem. For every prime power q, Γ(q) = 0 or Γ(q) = 1.

Proof. Fix q, and assume that 0 < Γ(q)< 1. Choose l so that

0 < γ(2i): (1)

Using Lemma 4, choose S �V (q2l
) so that

d̄(S) = γ(2l) (2)
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S contains no affine line: (3)

Choose ε < 0 so that

Γ(q)<
γ(2l)� ε

γ(2l)+ ε
� ε: (4)

Choose n so that (
A�V (qk)(n)

jAj> (γ(2l)+ ε)qkn

)
)

(
A contains

an affine line

)
: (5)

Choose t (using the extended Hales-Jewett theorem; see [5] or [8]) so that t is a power of 2 and

(
T is a t-dimensional affine subspace

and T = T1[�� �[Ts, where s = 2qkn
�1

)
)

8><
>:

some Ti

contains an
affine line

9>=
>; : (6)

Set
V 0 =V (qk)�V (qk)(n); Bv = (v+V (qk(n))\S; v 2V 0: (7)

Partition V 0 into 2qkn
classes Cσ as follows.

Cσ = fv 2V 0 : Bv = v+σg; σ �V (qk)(n): (8)

(Note that Cσ = fv 2V 0 : Bv = φg.)
Let

C =
[
fCσ : σ 6= φg;

and let
d̄V 0(C) = limsup

m!∞

(q�k)(m�n)jC\V 0(m)j: (9)

Since
jC\V 0(m)j< (d̄V 0(C)+ ε)qk(m�n)

for all but finitely many m, and since

jS(m)j> (γ(2l)� ε)q�km

for infinitely many m (by (2)), we can choose m so that n < m and

(γ(2l)� ε)qkm < jS(m)j (10)

jC\V 0(m)j< (d̄V 0(C)+ ε)qk(m�n): (11)

Using (7), (3), and (5) we get
jBvj � (γ(2l)+ ε)qkn; v 2V 0: (12)

Note that m > n and
V (qk)(m) =

[
fv+V (qk)(n) : v 2V 0(m)g;
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so that

V (qk)(m)\S =
[
f(v+V (qk)(n)\S : v 2V 0(m)g

=
[
fBv : v 2V 0(m) and Bv 6= φg

=
[
fBv : v 2V 0(m)\Cg:

That is,
S(m) =

[
fBv : v 2V 0(m)\Cg: (13)

Now using (10), (13), (12), (11) we get

(γ(2l)� ε)qkm < jS(m)j< (γ(2l)+ ε)qkn(d̄V 0(C)+ ε)qk(m�n);

or
γ(2l)� ε

γ(2l)� ε
� ε < d̄V 0(C):

Using (4), this gives
Γ(q)< d̄V 0(C): (14)

The integer t was chosen to be a power of 2, say t = 2b, and to satisfy (6). Since

γ(2lt) = γ(2l+b)� Γ(q)< d̄V 0(C);

it follows from Lemma 3 that C contains a t-dimensional affine subspace T . We partition the elements
of T into 2qkn

�1 classes Cσ \T , σ 6= φ . By (6), some Cσ0 \T , and hence some Cσ0 , contains an affine
line u1; : : : ;uqk . Using (8) and (7), u1 2Cσ0 implies

u1+σ0 = Bu1 � S:

Similarly,
ui+σ0 = BUi � S; 1� i� qk: (15)

In particular, taking any element v0 2 σ0 (σ0 6= φ), S contains the affine line

u1+ v0; : : : ;uqk + v0;

which contradicts (3).
This contradiction shows that 0 < Γ(q)< 1 is impossible, and complete the proof.
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