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Abstract

Let A = fa1;a2; : : : ;akg be a set of k relatively prime positive integers. Let pA(n) denote the

partition function of n with parts in A, that is, pA is the number of partitions of n with parts belonging

to A.

We survey some known results on pA(n) for general k, and then concentrate on the cases k = 2

(where the exact value of pA(n) is known for all n), and the more interesting case k = 3. We also

describe an approach using the cycle indicator formula.

Let A = fa;b;cg, where a, b, c are pairwise relatively prime. It has long been known (Ehrhart,

J. Reine Angew. Math. 226 (1967), 1–29) that the problem of finding the value of pA(n) reduces to

the problem of finding the value of pA(r), where 0 � r < abc. Sertöz and Özlük (Istanbul Tek. Üniv.

Bül. 39 (1986), 41–51) have handled the case abc�a�b� c < r < abc. Our main contribution is a

recursive method for computing the value of pA(r) in the case r � abc�a�b� c.

1 Introduction

Let n be a positive integer. A partition of n is a representation of n as a sum of positive integers. The order
of the terms of this sum does not matter. The partition function, denoted by p(n), counts the number of
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†The auther thanks the Institute of Mathematics, Academia Sinica, Taipei, Taiwan for support and a pleasant stay.

1



partitions of n. For example, p(4) = 5, since 4 has exactly 5 partitions: 1+ 1+ 1+ 1, 1+ 1+ 2, 1+ 3,
2+2, and 4.

Now, let A = fa1;a2; : : : ;akg be a set of k relatively prime positive integers. A partition of n with

parts in A is a representation of n as a sum of not necessarily distinct elements of A. Again, the order
of the terms of this sum does not matter. The partition function in this situation, denoted by pA(n),
counts the number of partitions of n with parts in A, see Stanley [37]. Obviously, pA(n) is the number of
non-negative integer solutions (x1;x2; : : : ;xk) of the equation

a1x1+a2x2+ � � �+akxk = n:

as mentioned by Comtet [8]. It is well known that for all sufficient large n the equation has a solution.
Trivially, if A = f1;2; : : : ;ng, then pA(n) = p(n) (see [25]).

The famous problem of Frobenius is to find the largest natural number g such that pA(g) = 0, that is,
the largest natural number g which cannot be expressed in the form a1x1 +a2x2 + � � �+akxk, where the
xi are non-negative integers.

The Frobenius problem has a long history (See, for example, [16, 31]). Sylvester [38] completely
solved the problem for k = 2 in 1882, and Glaisher [13] simplified the proof in 1909: When A= fa1;a2g
and a1, a2 are relatively prime, then every n� (a1�1)(a2�1) can be expressed in the form n= a1x+a2y,
where x, and y are non-negative integers, and a1a2�a1�a2 cannot be so expressed. Thus the number g

in this case is g = a1a2�a1�a2.
When k = 3, no closed-form expression for g is known, except in some special cases, although there

do exist explicit algorithms for calculating it. See for example [7, 9, 15, 19, 20, 32, 33].
It seems very difficult to calculate g when k� 4 (however, see [35]). In the general case, various upper

bounds are known (for instance, see [6]), and closed-form expressions are known in a few special cases,
for example in the case that a1;a2; � � � ;ak is an arithmetic progression (See [31]). In fact, it has been long
conjectured that the Frobenius problem is NP-hard, and this is proved by Ramirez-Alfonsin [29].

This paper is devoted to th study of pA(n) when k = 2 and 3. Our main contribution is a recursive
method for computing the value pA(n) when n � a1a2a3 � a1 � a2 � a3 where a1;a2;a3 ar pairwise
relatively prime integers. We also provide a short proof of a known result when k = 2 (see Theorem 4.1).
Our proof yields a complete explicit formula for pA(n) in the case k = 2 (see Corollary 4.3).

In Sections 2 and 4, we survey some known results on pA(n) for general k. In Section ??, we forucs
our attention on the cases k = 2 and k = 3 (see [10, 11] for some results concerning the case k = 4).
Section 5 describes an approach using the cycle indicator formula.

2 Asymptotic formula for pA(n) and p(n)

If A = fa1;a2; : : : ;akg is a set of k relatively prime positive integers, it is known that

pA(n)�
nk�1

a1a2 � � �ak(k�1)!

(see [40, pp. 134, Problem 15C]). A proof of this result appears in [26], Problem 27. The proof there
is based on the generating function of pA(n). Elementary proofs are given in [24, 36, 41]. For the case
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A = f1;2; � � � ;kg, an elementary proof of this formula was given by Erdős [12].
For the unrestricted partition function p(n), Rademacher [28] (see also [2]) gives an asymptotic

formula as

p(n)� exp(π(2=3)1=2n1=2)

4
p

3n
;

a result which was proved earlier by Hardy and Ramanujan [17]. Erdős [12] gave an elementary proof
of the relation

p(n)� a � exp(π(2=3)1=2n1=2)

n
;

but was unable to show that a = 1
4
p

3
. Krätzel [21] proved the bound p(n) � 5n=4, with equality only

when n = 4.

3 Recurrence relation for pA(n) and p(n)

Apostol [2] (see also [1]) shows by analytical methods that

npA(n) =
n

∑
k=1

σA(k)pA(n� k);

where σA(n) denotes the sum of those divisors of n which belong to A.
This result generalizes a result of Euler, who proves this identity for the case A = f1;2; : : : ;kg. This

result holds for an arbitrary set A of positive integers, not necessarily finite. Hence when A is the set of
all positive integers, this becomes

np(n) =
n

∑
k=1

p(n� k)σ(k):

Bell [4] shows that if A= fa1;a2; : : : ;akg and a is the least common multiple of fa1;a2; : : : ;akg, then

pA(an+b) = c0+ c1n+ c2n2+ � � �+ ck�1nk�1;

where c0;c1;c2; : : : ;ck are constants independent of n and b, 0 � b < a. (See also [27, 41].)
The constants are fully determined if pA(an+b) is known for k different values of n. This can be

done using Lagrange’s interpolation formula. For example, if A = fa1;a2;a3g, then

2pA(an+b) = (n�2)(n�3)pA(a+b)�2(n�1)(n�3)pA(2a+b)

+(n�1)(n�2)pA(3a+b):

This formula does not however provide an effective way to calculate pA(n). Later, Kuriki [22] proves a
somewhat different recursion formula for pA(n).

Although there are a number of algorithms for finding the largest number not representable in the
form a1x1+a2x2+ � � �+akxk (see for example [14,23,35]), it would be of interest to find a fast algorithm
for calculating pA(n).
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4 Cases jAj = 2 and jAj = 3

In the first part of this section, we consider the case jAj = 2. It is quite well known that pA(n) =
� n

ab

�
or

� n
ab

�
+ 1 (see [25]). However, one unified formulae has been obtained as stated in the following

theorem. This theorem is proved independently by Sertöz in 1998 [34], Tripathi in 2000 [39] and Beck
and Robins [3]. Their proofs involve generating functions. There is also a simple direct proof, which we
give below. We then give a simple algorithm for calculating pA(n) based on the proof of this theorem.

Theorem 4.1. Let A = fa;bg with (a;b) = 1. Define a0(n) and b0(n) by a0(n)a � �n mod b, with

1 � a0(n)� b and b0(n)b ��n mod a with 1 � b0(n)� a, respectively. Then for all n � 1,

pA(n) =
n+aa0(n)+bb0(n)

ab
�1:

Proof. It is well known (see for example Brown and Shiue [5]) that for all n � 0, if n = qab+ r with
0� r < ab then pA(n) = q+ pA(r), that for all 0< n< ab, pA(n) = 0 or 1, that pA(n) = 1 for ab�a�b<

n < ab, and that pA(n) = 0 if n = ab� a� b. Therefore to prove the theorem we may assume that
0 < n < ab�a�b.

Note that ab divides aa0(n)+ bb0(n)+ n, since each of a and b divides aa0(n)+ bb0(n)+ n. Also,
0 < aa0(n)+bb0(n)+n < 3ab, so that either aa0(n)+bb0(n)+n= ab or aa0(n)+bb0(n)+n= 2ab. Now
we only need to show that

(i) aa0(n)+bb0(n)+n = ab implies pA(n) = 0;

(ii) aa0(n)+bb0(n)+n = 2ab implies pA(n) = 1.

If aa0(n)+ bb0(n)+ n = ab and as+ bt = n for some s; t � 0, then aa0(n)+ bb0(n)+ as+ bt = ab,
or a(a0(n) + s) + b(b0(n) + t) = ab, so aj(b0(n) + t) and bj(a0(n) + s). Since 0 < b0(n) + t � a and
0 < a0(n)+s� b, this gives a= b0(n)+ t and b= a0(n)+s, hence 2ab= ab, a contradiction. This proves
(i). To prove (ii), simply note that if aa0(n)+bb0(n)+n= 2ab, then n= a(b�a0(n))+b(a�b0(n)).

This theorem is easy to generalize to the case (a;b) = d in the following corollary. We omit its trivial
proof.

Corollary 4.2. Let A = fa;bg with (a;b) = d. If d divides n, define a0(n) and b0(n) by a0(n) a
d � � n

d

mod b
d and b0(n) b

d �� n
d mod a

d , respectively, as those in Theorem 4.1. Then for all n � 1,

pA(n) =

(
0 if d does not divide n

n+aa0(n)+bb0

lcmfa;bg �1 if d divides n.

From the statement and the proof of Theorem 4.1, if (a;b) = 1, we can compute pA(n) in the follow-
ing

Algorithm 4.3. Let A = fa;bg with (a;b) = 1. Let n = qab+ r with 0 � r < ab. If ab�a�b < r < ab,

then pA(n) = q+1. If r = ab�a�b, then pA(n) = q. For the remaining value of r, we have pA(n) = q if

aa0(r)+bb0(r)+ r = ab and pA(n) = q+1 if aa0(r)+bb0(r)+ r = 2ab. (Here a0(r) and b0(r) are defined

as in the statement of the theorem.)

4



We now give examples using this corollary. We do not write down all partitions and only compute
the number pA(n) instead.

Example 4.4. [34] Let n = 123456789012345 and A = fa;bg, where a = 1234567, b = 12345678.

Write q = 8 and r = 1524255800937. Then we have n = q � ab+ r. Moreover, a0(r) = 462963 and

b0(r) = 1064806. Hence, aa0(r) + bb0(r) + r = 15241566651426 = ab. By Corollary 4.3, we have

pA(n) = 8.

We now consider the case jAj = 3 in the remaining part of this section. The case is a little bit more
complicated. First of all, we need the following lemma. In this lemma and afterwards, u0v(t) will denote
the number 1 � u0v(t)� v satisfying uu0v(t)��t mod v, whenever u;v � 1 and t are integers satisfying
(u;v) = 1.

Lemma 4.5. Let A = fa;b;cg, where a;b, and c are relatively prime positive integers. Write d3 =

(a;b), d1 = (b;c), and d2 = (c;a). Then for any integer n > 0, the number n0 = n� (d1 � a0d1
(n))a�

(d2 � b0d2
(n))b� (d3 � c0d3

(n))c is divisible by d1d2d3. Moreover, pA(n) = p
A0
( n0

d1d2d3
), where A0 =

f a
d2d3

; b
d3d1

; c
d1d2

g and where we use the convention that p
A0
(0) = 1 and p

A0
( n0

d1d2d3
) = 0 if n0 < 0.

Proof. If ax+ by+ cz = n with x;y;z � 0, then d3 divides n� cz = ax+ by. Since d3 � c0d3
(n) is the

smallest nonnegative integer u such that d3 divides n�uc, z= d3z0+(d3�c0d3
(n)) for some nonnegative

integer z0. Similarly, x = d1x0+(d1�a0d1
(n)) and y= d2y0+(d2�b0d2

(n)) for some nonnegative integers
x0 and y0, respectively. So, ax+ by+ cz = n with x;y;z � 0 if and only if a(x� (d1 � a0d1

(n)))+ b(y�
(d2 � b0d2

(n)))+ c(z� (d3 � c0d3
(n))) = n0 with x� (d1 � a0d1

(n));y� (d2 � b0d2
(n));z� (d3 � c0d3

) � 0.
This implies that d1d2d3 divides n0. Moreover,

a(x� (d1�a0d1
(n)))

d1d2d3
+

b(y� (d2�b0d2
(n)))

d1d2d3
+

c(z� (d3� c0d3
(n)))

d1d2d3
=

n0

d1d2d3
:

This implies pA(n) = p
A0
( n0

d1d2d3
).

From this lemma, it is enough to consider, afterwards, the set A= fa;b;cg such that positive integers
a;b, and c are relatively prime in pairs, i.e., (a;b) = (b;c) = (c;a) = 1. The following two theorems are
quite well-known.

Theorem 4.6 (Ehrhart [10]). Let A = fa;b;cg, where positive integers a;b, and c are relatively prime in

pairs. Let n = q �abc+ r with 0 � r < abc. Then

pA(n) = pA(r)+
q(n+ r+a+b+ c)

2
:

In particular,

pA(abc) =
abc+a+b+ c

2
+1:

Theorem 4.7 (Sertöz and Özlük [36]). Let A = fa;b;cg where a;b, and c are relatively prime in pairs.

Let n = q �abc+ r with 0 � r < abc. Then, for 1 � x � a+b+ c�1,

pA(abc� x) =
abc+a+b+ c

2
� x:
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In particular,

pA(abc�a�b� c+1) =
abc�a�b� c

2
+1:

It seems that it is not easy to find a “simple” closed form for computing pA(n) whenever n � abc�
a� b� c. Here, we are going to give a method to compute such pA(n). For this purpose, we need the
following

Proposition 4.8. Let A = fa;b;cg where positive integers a;b;c are pairwise relatively prime and let n

be a non-negative integer. Then

pA(n) =

(
pA(n�a�b� c)+qA(n) if n � a+b+ c

qA(n) if 1 � n < a+b+ c

where qA(n) = pAnfag(n)+ pAnfbg(n)+ pAnfcg(n)� εa(n)� εb(n)� εc(n) with

εd(m) =

(
1 if djm
0 otherwise.

Proof. Write Efa;b;cg(n)= f(x;y;z)jx;y;z� 0 are integers, and xa+yb+zc= ng. Let (x1;y1;z1)2Efa;b;cg(n).
If 0 < n < a+b+c then x1y1z1 = 0. Thus, pA(n�a�b� c) = jEfa;b;cg(n)nfEfa;b;0g(n)[Efa;0;cg(n)[
Ef0;b;cg(n)gj and the result follows by the inclusion-exclusion formula.

In the following corollary the values pA(abc�a�b� c) and pA(abc�a�b� c�1) are obtained as
particular cases of Proposition 4.8.

Corollary 4.9. Let A = fa;b;cg where a, b and c are positive pairwise relatively prime integers. Then

pA(abc�a�b� c) =
abc�a�b� c

2
+1:

and

pA(abc�a�b� c�1) =
abc�a�b� c

2
�1:

Proof. From Proposition 4.8, we have pA(abc�a�b� c)= pA(abc)� pAnfag(abc)� pAnfbg(abc)� pAnfcg(abc)+

εa(abc)+ εb(abc)+ εc(abc). By Theorem 4.6, we have that pA(abc) = abc+a+b+c
2 +1 and, by Corollary

4.3, we obtain that pAnfag(abc) = a+ 1, pAnfbg(abc) = b+ 1, and pAnfcg(abc) = c+ 1. Since εa(abc) =

εb(abc) = εc(abc) = 1 then pA(abc�a�b� c) = abc�a�b�c
2 +1.

Now again, from Proposition 4.8, we have pA(abc�a�b� c�1) = pA(abc�1)� pAnfag(abc�1)�
pAnfbg(abc� 1)� pAnfcg(abc� 1)+ εa(abc� 1)+ εb(abc� 1)+ εc(abc� 1). By Theorem 4.7, we have
that pA(abc�1) abc+a+b+c

2 �1 and, by Corollary 4.3, we obtain that pAnfag(abc�1) = pAnfag((a�1)bc+

(bc�1)) = a (similarly, pAnfbg(abc�1) = b and pAnfcg(abc�1) = c). Since εa(abc�1) = εb(abc�1) =
εc(abc�1) = 0 then pA(abc�a�b� c�1) = abc�a�b�c

2 �1.

Using Proposition 4.8, we will give a method to compute pA(n) for n � abc� a� b� c in the fol-
lowing theorem. For this purpose, we need the notation that for positive integers u and v with (u;v) = 1,
write v0u(n) instead of v0(n) as in Theorem 4.1.
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Theorem 4.10. Let A = fa;b;cg where positive integers a, b and c are pairwise relatively prime. Let n

be a positive integer and let t be the largest integer such that n� t(a+b+ c)� 0. Then,

pA(n) =
2n(t+1)s3� t(t+1)s2

3
2abc

+
1
a

t

∑
i=0
(b0a(n� is3)+ c0a(n� is3))

+
1
b

t

∑
i=0
(c0b(n� is3)+a0b(n� is3))+

1
c

t

∑
i=0
(a0c(n� is3)+b0c(n� is3))

�3(t+1)�
t

∑
i=0
(εa(n� is3)+ εb(n� is3)+ εc(n� is3))

where s3 = a+b+ c with εd(m) defined as in Proposition 4.8.

Proof. By applying recursively Proposition 4.8, we have that

pA(n) =
t�1

∑
i=0

qA(n� is3)+ pA(n� ts3) =
t

∑
i=0

qA(n� is3)

where qA(m) is defined as in Proposition 4.8. Hence,

t

∑
i=0

qA(n� is3) =
t

∑
i=0
(pAnfag(n� is3)+ pAnfbg(n� is3)+ pAnfcg(n� is3))

�
t

∑
i=0
(εa(n� is3)+ εb(n� is3)+ εc(n� is3)):

The result follows by using Theorem 4.1.

We give the following example as an illustration of the theorem.

Example 4.11. Consider A = f5;7;11g and n = 41. Write a = 5, b = 7 and c = 11 for convenience.

Then, s3 = a+b+c= 23. Since 41= 1�23+18, t = 1. It is easy to see that the first term in the theorem

equals
2n(t+1)s3� t(t+1)s2

3
2abc

=
1357
385

:

For positive integers u and v with (a;b) = 1, let u�1
v be the multiplicative inverse of u modulo v.

It easy to see that a�1
b = 3, a�1

c = 9, b�1
a = 3, b�1

c = 8, c�1
a = 1, and c�1

b = 2. Write k = 18. Then,

a0b(k+ is3)��a�1
b k� i(1+a�1

b c)� 2+ i (mod 7) for i= 0;1. Also, a0c(k+ is3)� 3+2i (mod 11), b0a(k+
is3)� 1+ i (mod 5), b0c(k+ is3)� 10+3i (mod 11), c0a(k+ is3)� 2+2i (mod 5), and c0b(k+ is3)� 6+3i

(mod 7) for i = 0;1. So, 1
a ∑i=01(b0a(k+ is3)+ c0a(k+ is3) =

9
5 , 1

b ∑i=01(a0b(k+ is3)+ c0b(k+ is3) =
13
7 ,

1
c ∑i=01(a0c(k+ is3)+b0c(k+ is3) =

20
11 . Moreover, neither 18 nor 41 is divided by any one of 5, 7 and 11.

Hence, εa(k+ is3) = εb(k+ is3) = εc(k+ is3) = 0 for i = 0;1. Combining all results above together, we

have

pA(A)(41) =
1357
385

+
9
5
+

13
7
+

20
11
�3(1+1)�0 = 3:

7



Indeed, there are exactly 3 partitions of 41 with parts in A, namely

41 = 5+5+5+5+7+7+7

= 5+5+5+5+5+5+11

= 5+7+7+11+11:

5 The cycle indicator formula

The cycle indicator Cn of the symmetric permutation group of n letters is an effective tool in enumerative
combinatorics, which may be written in the form (cf. [30])

Cn(t1; t2; : : : ; tn) =∑
n!

k1!k2! � � �kn!

� t1
1

�k1 � t2
2

�k2 � � �
� tn

n

�kn
;

where t1; t2; : : : ; tn are real numbers and the summation is over all non-negative integer solutions k1;k2; : : : ;kn

of the equation k1+2k2+ � � �+nkn = n.
Let σ(n) = ∑djn d. Then Hsu and Shiue [18] obtain

p(n) =
1
n!

Cn(σ(1);σ(2); : : : ;σ(n));

where p(n) is the unrestricted partition function from Section 1 above. From this, they obtain by purely
combinatorial methods the previously mentioned recurrence relation

np(n) =
n

∑
k=1

σ(k)p(n� k):

The cycle indicator equality above can be generalized in the following way. Let A be any given set
of positive integers. (A can be finite or infinite.) Define pA(0) = 1 and σA(n) =∑djn;d2A d. Then Hsu and
Shiue [18] obtain

pA(n) =
1
n!

Cn(σA(1);σA(2); : : : ;σA(n));

and consequently they deduce, again by purely combinatorial methods,

npA(n) =
n

∑
k=1

σA(k)pA(n� k):

As a particular instance, let us take H = f20;21;22; : : :g, so that b(n) = pH(n) is the number of binary

partitions of n. Let β (n) =∑2ijn 2i. Then the above equations become b(n) = 1
n!Cn(β (1);β (2); : : : ;β (n))

and nb(n) = ∑
n
k=1 β (k)b(n� k).
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