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1 Introduction

In this note we give some sufficient conditions for the irrationality of the sum of the series ∑
∞
n=1 1=H( f (n)),

where H(k))k�0 is a sequence of integers, positive from some point on, satisfying a homogeneous linear
recurrence relation with integer coefficients, and f is a strictly increasing function from the set of positive
integers to the set of nonnegative integers.

We will refer to such a sequence (H(k))k�0 simply as a “recurrent sequence,” and the symbol f will
always denote a strictly increasing function from the set of positive integers to the set of nonnegative
integers.

Let us agree that the symbol ∑1=H( f (n)) denotes the summation of all those terms 1=H( f (n)) for
which H( f (n))> 0.

All of our results are based on the following theorem of C. Badea [1].

Theorem A. (Badea [1]). If (ak)k�0 is a sequence of positive integers such that ak+1 > a2
k � ak + 1 for

all sufficiently large k, then ∑1=ak is irrational.

A simple example to show that the converse of Badea’s Theorem A is false is the series ∑1=n! = e.
Another easy example to see that the converse of Badea’s result is false is the following. Let fcng, n� 1,
be a nonperiodic sequence of 2’s and 5’s, and let an = 10n=cn, n � 1. Then ∑1=an is irrational, and
an+1 < a2

n�an +1, n � 3.
Thus our goal is to find simple conditions on H(k) and f (n) which ensure that H( f (n + 1)) >

H( f (n))2�H( f (n))+1 for all sufficiently large n.
To avoid complications, from now on we will always assume that the characteristic polynomial of

the recurrent sequence H(k) has a unique (real) root β > 1 of maximum modulus.
It then follows from standard properties of recurrence relations (see, for example, [6]) that there exist

numbers A> 0 and c� 0 such that limk!∞ H(k)=(kcβ k) = A. (If β is a root of multiplicity 1, then c = 0.)

2 Main results.

Theorem 1. If f (n+ 1)� 2 f (n)! ∞ as n ! ∞ and f (n+ 1) � f (n)2 for all sufficiently large n, then

∑1=H( f (n)) is irrational for every recurrent sequence H(k).
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Proof. Assume that H(k)=kcβ k ! A as k !∞ (where β > 1, A > 0 and c� 0). To apply Badea’s result,
we need to show that H( f (n+1))=(H( f (n))2�H( f (n))+1)> 1 for sufficiently large n. We do this by
dividing the numerator and denominator of the lefthand side of this inequality by f (n+1)cβ f (n+1).

Since H( f (n + 1))= f (n + 1)cβ f (n+1) ! A > 0 as n ! ∞, then H( f (n + 1))= f (n + 1)cβ f (n+1) >

(2=3)A for all sufficiently large n.
Next,

H( f (n))2�H( f (n))+1
f (n+1)cβ f (n+1) =

f (n)2c

f (n+1)c
1

β q

�
H( f (n))2

f (n)2cβ 2 f (n)
� H( f (n))

f (n)2cβ 2 f (n)

�

+
1

f (n+1)cβ f (n+1) ;

where q = f (n+1)�2 f (n). Since the expression inside the large brackets converges to A2 and the other
term converges to 0, for sufficiently large n (using also f (n)2c= f (n+1)c � 1)

H( f (n))2�H( f (n))+1
f (n+1)cβ f (n+1) < β

�q(A2 +1)+(1=3)A:

Finally,
H( f (n+1))

H( f (n))2�H( f (n))+1
>

(2=3)A
β�q(A2 +1)+(1=3)A

> 1;

as required.

Corollary 1. For every recurrent sequence H(k), ∑1=H(22n
) is irrational.

For the next result, we weaken the condition on f and strengthen the condition on H(k).

Theorem 2. If f (n+ 1)� 2 f (n)! ∞ as n ! ∞, then ∑1=H( f (n)) is irrational for every recurrent se-
quence H(k) for which β has multiplicity 1. (Recall that β > 1 is the unique root of maximum modulus
of the characteristic polynomial of H(k).)

Proof. The proof of Theorem 1, with c set equal to 0 throughout, gives a proof of Theorem 2.

Corollary 2. Let H(k) be a recurrent sequence for which β has multiplicity 1. Then for every ε > 0,

∑1=H([(2+ ε)n]) is irrational. For every 0 < ε < 1, ∑1=H(2n� [(2� ε)2]) is irrational.

Theorem 3. Let H(k) be a recurrent sequence for which β has multiplicity 1. Then there exists an integer
P such that for every pair of fixed integers s; p with s > 0, �∞ < p � P, ∑1=H(s2n + p) is irrational.

Proof. Assume that H(k)=β k ! A as k ! ∞, where β > 1 and A > 0. Let s; p be given with s > 0 and
p <� logA= logβ . Let f (n) = s2n + p, n � 1. Since f (n+1)�2 f (n) =�p,

H( f (n))2�H( f (n))+1
β f (n+1) =

1
β�p

�
H( f (n))2

β 2 f (n)
� H( f (n))

β 2 f (n)

�
+

1
β f (n+1) ! β

pA2:

Thus, since H( f (n+1))=β f (n+1) ! A,

H( f (n+1))
H( f (n))2�H( f (n))+1

! 1
β pA

:
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Since β pA < 1 by the choice of p,

H( f (n+1))
H( f (n))2�H( f (n))+1

> 1

for sufficiently large n, and therefore 1=∑H( f (n)) = ∑1=H(s2n + p) is irrational, by Badea’s theorem.

3 Remarks

For the Fibonacci sequence F(k), where

F(0) = 0; F(1) = 1; F(k+2) = F(k+1)+F(k); k � 0

F(k) = (1=
p

5)(((1+
p

5)=2)k� ((1�
p

5)=2)k);

β = (1+
p

5)=2; A = 1=
p

5;

� logA= logβ = 1:67 : : :. Thus, according to the proof of Theorem 3, ∑1=F(s2n + p) is irrational for
every fixed pair of integers s > 0 and p � 1. This is a generalization of a result of C. Badea [1], who
showed, answering a question of Erdős and Graham [2], that ∑1=F(2n +1) is irrational.

More generally, let H(0) = 0, H(1) = 1, H(k+2) = aH(k+1)+bH(k), k � 0, where a � 1, b � 1.
Then H(k) = (1=

p
a2 +4b)(((a+

p
a2 +4b)=2)k � ((a�

p
a2 +4b)=2)k), β = (a+

p
a2 +4b)=2, A =

1=
p

a2 +4b, and β pA < 1 for p� 1, so again ∑1=H(s2n+ p) is irrational for every fixed pair of integers
s > 0 and p � 1. This extends a result of Kuipers [4] (see also [5]), who showed this in the case b = 1
and p = 0. (One can relax the requirement a � 1, b � 1 to a = 1, b � 1 or a � 2, a2 +4b > 0. In these
cases A < 1 < β , so that β pA < 1 holds for p� 0 and ∑1=H(s2n + p) is irrational for s > 0 and p� 0.)

If a2 + 4b < 0, so that the characteristic polynomial x2 � ax� b of the sequence H(k) no longer
has a unique root of maximum modulus, it is easy to verify that the sequence H(k) has infinitely many
negative terms, for any nontrivial initial values H(0), H(1). For such a sequence the present methods
give no information about the irrationality of ∑1=H( f (n)) for any function f .

Some examples of polynomials for which β > 1 and b has multiplicity 1 (β is the unique root of
maximum modulus for the given polynomial) are discussed in Hua and Wang [3], including the poly-
nomials xd � xd�1��� �� x�1, d � 2, (which come from the generalized Fibonacci sequences F(0) =
F(1) = � � �F(d�2) = 0, F(d�1) = 1, F(k+d) = F(k+d�1)+F(k+d�2)+ � � �+F(k+1)+F(k),
k � 0), xd �Lxd�1 � 1, d � 2, L � 2, and xt � t2rt�1xt�1 +(�1)t�2At�2rt�2xt�2 + � � � �A1rx� 1 = 0,
t � 2, where

A1 =

�
2t
1

�
; Ak =

�
2t
k

�
�A1

�
2t�2
k�1

�
��� ��Ak�1

�
2t�2k+2

1

�
;

t�2 � k > 1, and the positive integer r satisfies t2 > 2=rt�1 + jA1j=rt�2 + � � �+ jAt�2j=r.
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