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Abstract

Given ¢ families, each family consisting of s finite sets, we show that if the families “separate
points” in a natural way, and if the union of all the sets in all the families contains more than (s+ 1)" —

s'~1 —1 elements, then a common transversal of the 7 families exists. In case each family is a covering

family, the bound is s' — s'~!. Both of these bounds are best possible. This work extends recent work
of Longyear [2].

1 Introduction and statement of results

Throughout this paper, the symbol .# will always denote a family of 7 families of sets, each of the ¢
families consisting of s finite, but not necessarily distinct or nonempty, sets. The symbol Q will always
denote the union of all of the sets contained in all of the ¢ families. Thus % = (F,F5,...,F;), where
for each j, 1 < j <t, Fj = (F;(1),Fj(2),...,Fj(s)) is a family of s (finite, but not necessarily distinct
or nonempty) sets, and Q = J{Fj(i) : 1 < j <t,1 <i<s} (or more briefly, Q = JUU.%). We always
assume that .% separates points of Q in the following sense. Letting F;(0) = Q\UF;, 1 < j<t, we
require

‘m{Fj(aj) 1< j<t} <1

for every t-tuple (ay,as,...,a;), where 0 < a; <s, 1 < j <t. Note that this immediately implies |Q| <
(s+1)" =1 (since |{F;j(0) : 1 < j <t}| =0), and that in the case where each F; covers Q (so that
F;(0) = 0) we have |Q| <.

Recall that the set T is a transversal (sometimes called a system of distinct representatives or SDR)
of the family F; if there is a bijection ¢ : T+ {1,2,...,s} such that x € F;(¢(x)) for all x € T. The set
T is a common transversal of Fy,F,...,F; if T is simultaneously a transversal of each Fj, 1 < j <.

In this paper the following results are proved, which extend recent results of Judith Q. Longyear [2].
Longyear proved, among other things, Theorem 1(b) below in the case where each family F; is assumed
to consist of mutually disjoint sets. Theorem 1(b) can be obtained as a corollary to her result. We give

an alternative proof.

Theorem 1. Let .7 and Q be as in the first paragraph of this paper, and assume further that each family
Fjcovers Q, thatis, JF; =Q, 1< j<t



(a) If |Q| > s' — s~ then each family F; has a transversal, and s' —s'~" is best possible.

(b) If |Q| > 5" — 5"~ 1 then a common transversal of F\,F», . .., F, exists, and s' —s'~ ! is best possible.

Theorem 2. Let .7 and Q be as in the first paragraph of this paper.

(a) If|Q] > (s+1)! — (s+1)'=! — 1 then each family F; has a transversal, and (s+1)' — (s+1)'"1 — 1
is best possible.

(b) If|Q| > (s+ 1) —s'~! — 1 then a common transversal of Fy, F>, ..., F, exists, and (s+1)" —s'~1 — 1

is best possible.

2 Proofs

Let us show first of all that the bounds given in Theorems 1 and 2 are best possible.
For Theorem 1(a) and Theorem 1(b) let

Q={(a,a2,...,a;) 1 1<a; <s5,1<j<t—1,1<a <s—1}.

For all j,i, 1 < j<t1, 1<i<s, let Fj(i) = {w € Q : the jth coordinate of @ equals i}. Note that
Fi(s) = 0, so that F; has no transversal. It is easy to see that |Q] = s" — s'1 each Fjcovers Q, 1 < j<t,
and & = (F\,F,,...,F) separates points.

For Theorem 2(a), we let
Q={(ai,az,...,a1):0<a;<s5,1<j<t-1,0<a, <s—1}\{(0,0,...,0)}.
Forall j,i, 1 <j<t,1<i<s,let
F;(i) = {@ € Q: the jth coordinate of @ equals i}.

Again F;(s) = 0 so F; has no transversal, and it is easy to see that |Q| = (s+ 1) — (s+ 1)1 -1, Q =
UUZ, and & = (F,F,...,F) separates points.

For Theorem 2(b), let Q be the set of all z-tuples (ay,as,...,a;),0<a; <s, 1< j<t, excluding the
set ({(a1,a2,...,a;):1<a;<s,1<j<r—1,a4,=s}U{(0,0,...,0)}). Forall j,i,1<j<t,1<i<s,
let

F;(i) = {w € Q: the jth coordinate of @ equals i}.

Then any element @ of F;(s) must have its joth coordinate equal to O for some jy # ¢, and hence
@ cannot represent any set in the family Fj,, therefore @ cannot belong to any common transversal of
Fi,F>,...,F,. Therefore no common transversal exists. Again it is easy to see that |Q| = (s+ 1)’ —s'~! —
1, Q=UUZ, and F = (F,F>,...,F,) separates points.

Throughout the remaining proofs, the following notation will be used. It is therefore fixed once and
for all. For t > 2, let X be the set of all (f — 1)-tuples (ai,as,...,a,—1), where each aj, 1 < j<tr—1
satisfies 1 < a; < 5. Note that |X| = s'~!. For each x = (a1,a2,...,a,_1) € X, we denote by f(x)
the set (\{Fj(a;) : 1 < j <t—1}. Then since .# distinguishes points and each F; covers & we have
|[f(x)NF(i)| <1lforallxeXandalli, 1 <i<s,and Q ={f(x):x€X}.



Proof of Theorem 1(a). The case t = 1 follows from the various definitions, so we assume ¢ > 2, and
without loss of generality we restrict our attention to F;. We shall make use of the classical result
of P. Hall [1] according to which F; has a transversal if and only if | J{F (i) : i € I}| > |I| for all I C
{1,2,...,s}. Suppose that F; does not have a transversal, and that |F; (i;) UF; (i2) U---UF(ix—1) (F(ix) =
Oif k =1), hence Q = U{F (i) : 1 <i<s,i#ix}. Then

o =|(Utre xexy)n (UtaG 1 <i<si#id))|
= ‘U{f(x)ﬂFt(i) x€X,1 SiSS,i7éik}‘
< (i) ix € X, 1 <i<s,i i}

== =s5—5"1,

contrary to the hypothesis of the Theorem. Hence F; and similarly each F}, has a transversal. O

Proof of Theorem 1(b). Since the family F; = (F;(1),F(2),...,F;(s)) has a transversal (by Theorem 1(a))
and covers Q, we can replace F; by a partition G = (G(1),G(2),...,G(s)) such that G(i) C F(i) for all
i, 1 <i<'s. (The partition G can be constructed as follows. Let {@;, @;,...,®s} be a transversal of F;,
where @; € F;(i), 1 <i<s. Let

G(1) = F()\{m@,..., o},
G(2) = )\ (G(HU{as, ..., o5}),
G(3)=F(B)\(G(NHUGR)U{ay,..., o)),

G(s) = F(s)\ (GL)UGR)U---UG(s— 1)).

Then #' = (F,F,...,F—1,G) distinguishes points, hence |f(x) N G(i)| < 1 for all x € X and all 4,
1 <i<s, and any common transversal of Fi,F,...,F;,_1, G is acommon transversal of Fi,F>,... F;.

At this point we could in fact replace every F; by a partition (since we know by Theorem 1(a) that
every F; has a transversal); however, it is not necessary, and so we do not.

We now demonstrate the existence of a common trasversal of F1,F>,...,F,_1,G.

To this end we define a diagonal of X to be a subset D of X such that |D| = s and for each j,
1 < j <r—1, the jth coordinates of the elements of D run through {1,2,...,s} in some order. Note that
whenever D = {x,x2,...,x} is a diagonal, @y € f(x;), 1 <k <s, and @;,n,..., o are all distinct,
then {®;, @y, ..., @} is a common transversal of Fi, F5,...,F_].

Now we let 2 be some fixed collection of mutually disjoint diagonals of X whose union is X, X =
U Z. (The existence of Z can be shown by induction on ¢.)

Since |X| = s'~! and every diagonal has s elements, we have |2| = s'~2. For any diagonal D, let

f(D)=U{f(x):x € D}. Then

Q= J{fx):xex}=J{f(D):De 2}



Now
sl <1Q]< Y |7(D)| <|2|max{|f(D)] : D€ 7},
Dez
hence s*> — s < max{|f(D)|: D € 2}.
We now fix a diagonal D with s> —s < |f(D)|. Let D = {x1,x2,...,x;}, and define, for 1 <i <,
1<j<s,
| itrmne) 2o
ij=

0 otherwise.

Then since | f(x;) NG(j)| < 1 forall i, j, and G is a partition of &, the s x s 0-1 matrix (e;;) contains

exactly | f(D)|, and hence more than s> —s, 1’s. Therefore there exist (as can be shown by induction on

s) indices i1 j1,i2j2,...,Isjs such that e; j, = €;,j, = --- = ¢e;j, = L and {i1,i2,...,is} ={j1,j2,--., Js} =
{1,2,...,s}.

Now let {a} = f(xi,) NG(jix), I <k <s. Then since G is a partition, @, @, ..., ®; are all distinct,
and hence {®;,®;,...,®;} is not only a transversal of G but is also (since {xj,x2,...,xs} is a diago-
nal) a common transversal of Fy,F,,...,F;_;. Therefore {®;,®,,...,®;} is a common transversal of
F,F,...,F,_1,G, and hence of F{,F>, ..., F;.

This completes the proof of Theorem 1(b). O

Proof of Theorem 2(a). Recall that for each j, 1 < j <t, F;(0) denotes the complement in & of the union
of the family Fj, that is, F;(0) = Q\ U{F;(i) : 1 <i < s}. If now for each j, 1 < j <t, we let

and let 4 = (G1,Gy,...,G;), then & separates points and each family G; covers Q, therefore we may
proceed exactly as in the proof of Theorem 1(a), where now we have ¢ families with s+ 1 sets in each
family. Furthermore, since we know that ({F;(0) : 1 < j <t} = 0 (this is so because J{Fj(i) : 1 < j <
t,1 <i<s}=Q), the last inequality in the proof of Theorem 1(a) can be replaced by

|Q < {(x,1) :x € X,0 <i<s,i#i,(i,x) #(0,(0,0,...,0)) }]
=(s+1) —(s+1)""—1.

This proves Theorem 2(a). O

Proof of Theorem 2(b). For each j, 1 < j <t let Q; =JFj, and let
Qo=({Q;:1< <1}
Foreach j, 1< j<t,1<i<s,letG;(i) = Fj(i)NQo, G; = (Gj(1),G;(2),...,Gj(s)), and
9 =(G1,Ga,...,Gy).

Then foreach j, 1 < j <t,Q0=JG;. Also, since G;(i) C Fj(i), for all j, i, the family & separates points.

Thus, by Theorem 1(b), it suffices now to show that |Qq| > s* — s'~!, since any common transversal of



G1,G3,...,G; is also a common transversal of Fy, F,...,F;. Since .% separates points, the cardinal of
Q\ © cannot exceed the cardinal of the set of all those 7-tuples (ay,az,...,a;), 0 < a; <s, having at
least one coordinate equal to 0 (excluding (0,0,...,0)). Thatis, |[Q\ Q| < (s+ 1) —s" — 1. Hence

(s+1) =s1—1<1Q| = Q| +|Q\ Qo
<|Qol+ (s +1)' =5~ 1,

and therefore

|Qo| > 5" —s'~".

This completes the proof of Theorem 2(b). U
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