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Abstract

The classical Möbius function appears in many places in number theory and in combinatorial the-

ory. Several different generalizations of this function have been studied. We wish to bring to the

attention of a wider audience a particular generalization which has some attractive applications. We

give some new examples and applications, and mention some known results.
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1 Introduction

We define a generalized Möbius function µα for each complex number α . (When α = 1, µ1 is the
classical Möbius function.) We show that the set of functions µα forms an Abelian group with respect
to the Dirichlet product, and then give a number of examples and applications, including a generalized
Möbius inversion formula and a generalized Euler function. Special cases of the generalized Möbius
functions studied here have been used in [6–8]. For other generalizations see [1, 5]. For interesting
survey articles, see [2, 3, 11].
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Let us recall that the classical Möbius function µ(n) is defined for positive integers n in the following
way: µ(1) = 1. If n is not square free then µ(n) = 0. If n is square free and r is the number of distinct
primes dividing n, then µ(n) = (�1)r [9].

For any integer r, a Möbius function of order r may be defined by using binomial coefficients, namely
for each positive integer n,

µr(n) =∏
pjn

�
r

∂p(n)

�
(�1)∂p(n)

where p runs through all the prime divisors of n, and ∂p(n) = ordpn denotes the highest power k of p

such that pk divides n. Obviously µ1(n) = µ(n). For more details, see [7].
We now define a generalized Möbius function µα for each complex number α , by setting

µα(n) =∏
pjn

�
α

∂p(n)

�
(�1)∂p(n)

At the end of the paper, we mention a particularly interesting application of the case where α is real.

2 Group-theoretic properties

Recall that the classical Möbius function is multiplicative; i.e., if m and n are relatively prime, then
µ(mn) = µ(m)µ(n). It is easily seen that the definition of µα implies that this property extends to the
Möbius function of order α , giving us the following lemma.

Lemma 1. For each complex number α , µα is a multiplicative function.

Next, we recall the definition of the Dirichlet product (or convolution) of two arithmetic functions f

and g (cf. [1, 4]).

Definition 1. Given two arithmetic functions f and g, the Dirichlet (convolution) product f �g is again

an arithmetic function which is defined by

( f �g)(n) =∑
djn

f (d)g
�n

d

�
=∑

djn
f
�n

d

�
g(d);

where the summations are taken over all positive divisors d of n.

Evidently, the product is commutative: f � g = g � f . Using a little algebra one easily shows that
the following associative law also holds: ( f � g) � h = f � (g � h). That is, for all positive integers n,
(( f �g)�h)(n) = ( f � (g�h))(n). Moreover, the convolution f �g is a multiplicative function whenever
f and g are multiplicative functions.

Definition 2. Let

M = fµα : α 2 Cg

where C denotes the set of complex numbers. The set M may be called the set of generalized Möbius

functions of complex order.
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Lemma 2. For any given numbers α and β in C, we have

µα �µβ = µα+β

Proof. It is required to show that for all positive integers n,

(µα �µβ )(n) =∑
djn

µα(d)µβ

�n
d

�
= µα+β (n):

Since µα and µβ are multiplicative (by Lemma 1), the Dirichlet product µα � µβ is also multiplicative.
Thus, it suffices to consider the case n = pk, where p is prime and k is a positive integer. We easily find

(µα �µβ )(pk) = ∑
djpk

µα(d)µβ

�
pk

d

�
=

k

∑
i=0

µα(pi)µβ (pk�i)

=
k

∑
i=0

�
α

i

�
(�1)i

�
β

k� i

�
(�1)k�i

= (�1)k
�

α +β

k

�
= µα+β (pk);

since the relation (1+ x)α(1+ x)β = (1+ x)α+β implies

�
α +β

k

�
=

k

∑
i=0

�
α

i

��
β

k� i

�
:

Notice that µ0 is the Möbius function of order zero that gives the values

µ0(n) =∏
pjn

�
0

∂p(n)

�
(�1)∂p(n) =

(
1 n = 1;
0 n > 1:

Let us denote µ0 by δ . Since from Lemma 2 we have µα �δ = δ �µα = µα for all α , we call it the
identity element with respect to the Dirichlet product operation �.

We are now ready to show that M is an Abelian group.

Theorem 1. (M;�) is an Abelian group with identity element δ = µ0.

Proof. By Lemma 2 we see that M is closed with respect to the operation �. Moreover, we also have

µα �µβ = µβ �µα (α;β 2 C);

(µα �µβ )�µγ = µα � (µβ �µγ) (α;β ;γ 2 C);

µα �δ = δ �µα = µα µα �µ�α = µ�α �µα = δ (α 2 C);

Thus, the theorem is proved.
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Of course, if G is any additive subgroup of C, then MG = fµα : α 2 Gg is a subgroup of M.

3 Corollaries, examples and applications

Corollary 1. (Generalized Möbius inversion formulae).) For all α 2 C and arithmetic functions f ;g,

"
8n 2 N f (n) =∑

djn
µα

�n
d

�
g(d)

#
,

"
8n 2 N g(n) =∑

djn
µ�α

�n
d

�
f (d)

#
:

Proof. In fact, this is equivalent to the statement

f = µα �g, g = µ�α � f ;

which follows from
f = µα �g, µ�α � f = µ�α �µα �g = δ �g = g:

Evidently, Corollary 1 with α = 1 implies the classical Möbius inversion formulae ( f = µ �g, g=

µ�1 � f ), since µ1 = µ and µ�1 � 1:

µ�1(n) =∏
pjn

�
�1

∂p(n)

�
(�1)∂p(n) =∏

pjn

(∂p(n))!
(∂p(n))!

= 1:

Note here that the Möbius µ-function and µ�1 � 1 are inverses of each other under convolution.

Corollary 2. For all n 2 N and α 2 C,

∑
djn

µα(d) = µα�1(n):

This is equivalent to the statement (µ�1 � µα)(n) = µα�1(n). Note that the case α = 1 gives the
classical identity of Gauss

∑
djn

µ(d) = µ0(n) = δ (n):

Corollary 3. Let f be a completely multiplicative function such that f (mn) = f (n) f (m) for all positive

integers m and n, and let r be a positive integer. Then the r-times convolution of µr f with f satisfies

(µr f )� f � f � � � � � f = µ0 f ;

where (µα f )(n) = µα(n) f (n).

This follows easily form Corollary 2 and induction on r. Indeed we have

((µr f )� f )(n) =∑
djn

µr(d) f (d) f
�n

d

�
= f (n)∑

djn
µr(d) = (µr�1 f )(n):
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Moreover, it may be of interest to note that

µ�2(n) = (µ�1 �µ�1)(n) =∑
djn

1 = τ(n);

where τ(n) denotes the number of positive divisors of n. Thus, τ = µ�2. Consequently, from µ�2 �µ1 =

µ�1 and µ�2 �µ2 = µ0, we may obtain the identities

∑
djn

τ(d)µ
�n

d

�
= 1 and ∑

djn
τ(d)µ2

�n
d

�
= δ (n):

Example 1. Let σr(n) denote the sum of the rth powers of the divisors of n. The well-known identity

nr =∑µ(d)σr

�n
d

�

can be proved very simply in the following way. Let ir(n) = nr. Then, since µ�1 � 1, we have ir �µ�1 =

σr, and hence

(µ �σr)(n) = (µ � ir �µ�1)(n) = (ir �µ �µ�1)(n) = (ir �δ )(n) = ir(n) = nr
:

Example 2. Euler’s ϕ-function may be written as ϕ = i1 � µ1. Moreover, using τ = µ�2 we can easily

prove the identity

σ(n) =∑
djn

ϕ(d)τ
�n

d

�
:

In fact, these statements follow easily from the relations

ϕ(n) =∑
djn

dµ

�n
d

�
= (i1 �µ1)(n)

and ϕ � τ = (i1 �µ1)�µ�2 = i1 �µ�1 = σ (see Example 1).

Example 3. Fix a positive integer r � 1, and define ϕr = i1 � µr. Then, if n is ‘r-powerful’, that is,

∂p(n)� r for every prime divisor p of n, we have

ϕr(n) = n∏
pjn

�
1�

1
p

�r

:

This may be verified as follows:

ϕr(n) =∑
djn

dµr

�n
d

�
= n∑

djn

µr(d)
d

= n∏
pjn

r

∑
j=0

�
r
j

��
�

1
p

� j

= n∏
pjn

�
1�

1
p

�r

:

Note that, if r = 1, then ϕ1 = ϕ is the classical Euler function. Thus, ϕr may be called the generalized
Euler function of order r. This function has a similar meaning to that of ϕ , in that φr counts the number
of integers a, 1 � a � n, such that a is ‘rth-degree prime to n’. (This means that for each prime divisor
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p of n, there are a0;a1; : : : ;ar�1 with 0 < ai < p and a � a0 + a1 p+ � � �+ ar�1 pr�1 (mod pr).) Some
related details may be found in [8].

Example 4. The number of ordered factorizations of n into exactly k factors (see also [4, 13]) is

µ�k(n) =∏
pjn

�
∂p(n)+ k�1

k�1

�
:

Example 5. For any given integer k � 1 one may find a function αk such that

ϕ(n) =∑
djn

µk

�n
d

�
αk(d):

(For k = 1, of course α1 = i1.) Indeed, using the generalized Möbius inversion formula and Lemma 2

we obtain αk = µ�k � i1 � µ1 = i1 � µ1�k. A more explicit expression for αk(n) may also be obtained

(see [12, 13]).

Example 6. Here we would like to mention a remarkable application of µα . Rearick [10] has defined

the real power f α of an arithmetic function f with f (1) > 0, using his exponential and logarithmic

operators Exp and Log, as f α = Exp(αLog f ). Here (Log f )(1) = log f (1) and

(Log f )(n) = (logn)�1
∑
djn

f (d) f (�1)
�n

d

�
logd for n > 1;

where f (�1) is the Dirichlet inverse of f , and Exp = (Log)�1. Recently Haukkanen [6] proved the

following result: if f is a completely multiplicative function and α is a real number, then f α = µ�α f .

This result shows that the representation problem for f α can be nicely solved by using µα .
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