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Abstract

Let V be an n-dimensional affine space over the field with pd elements, p 6= 2. Then for every ε > 0

there is an n(ε) such that if n = dim(V ) � n(ε) then any subset of V with more than εjV j elements

must contain 3 collinear points (i.e., 3 points lying in a one-dimensional affine subspace).

1 Introduction

A celebrated result due to Van der Waerden says that if the integes in the interal [1;n] are colored with r

colors then there is a monochromatic arithmetic progression of length k if n is large enough as a function
of k and r. A stronger result, proved for k = 3 by Roth [9] and arbitrary k by Szmerédi [12, 13], asserts
that for all ε > 0 there is an n = n(ε;k) such that any set of integers A � [1;n] with more than εn

elements must contain an arithmetic progression of length k. Alternatively, if fk(n) denotes the size of
the maximal subset of f1; : : : ;ng that does not contain a k-term arithmetic progression then fk(n) = o(n).
This statement implies Van der Waerden’s Theorem and could be regarded as a “density version" of that
result.

Let F be a finite field of odd characteristic and let V be an n-dimensional vector space over F . Three
distinct points x;y;z in V are said to be collinear if z� y is a scalar multiple of y� x; i.e., x = u+ rv,
y = u+sv, z = u+ tv for distinct r;s, and t in F . The goal of this paper is to prove a density version of the
following known fact (see [4] or [9]): if the points of V are colored with r colors and n is large enough
as a function of r then there are 3 collinear points of the same color (in fact there is a whole line, plane,
...; see Section 4). Thus we intend to show that if ε > 0 is given and A is a subset of V with jAj > εjV j

then A contains 3 collinear points if n = dimF V is large enough as a function of ε .
Note that the relation of collinearity depends only on the structure of V as an affine space over F so

that we might as well take V to be an n-dimensional affine space over F (i.e., a set that is isomorphic to
Fn by an isomorphism that is determined only up to an affine transformation of Fn).

The method of the proof is based on ideas in Graham’s exposition in [4] of Szmerédi’s proof of Roth’s
theorem on 3-term arithmetic progressions. The main theorem is proved in the third section of the paper.
The second section contains some needed technical results, and the fourth section contains some further
remarks and corollaries. Perhaps, as with some other mathematical papers, the easiest approach for the
reader is obtained by reading the sections in reverse order.
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Our primary interest is in the case in which F is the field with 3 elements. In this special case 3
collinear points form an affine line. Since a combinatorial line is an affine line (but not vice versa) our
result could be viewed as a weakening of the density version of the Hales-Jewett Theorem (see Section 4;
other geometric Ramsey-type theorems should also have density analogues). It might be worthwhile to
point out to the reader that Graham offers a monetary reward [4] for a proof of the density version of the
Hales-Jewett result for three-element sets.

An ovaloid in the projective space Pr(F) is a subset that is maximal with respect to the property of
not containing 3 collinear points [8, 10]; they give certain codes that can correct one error and detect
three errors. In Section 4 we show how our main result implies that the density of ovaloids must be
asymptotically small. Thus if A is an ovaloid then jAj=jPr(F)j goes to 0 as r goes to infinity.

2 Lemmas

We need two substantial technical side results for the proof of the main theorem. In order not to disrupt
the flow of the main argument these results are presented in this section.

The first lemma is an extension of an analogue of an initial lemma in the proof of Roth’s Theorem in
Ref. [4]; we incorporate the proof given there.

Let F be a finite field with q elements (q not necessarily odd). If V is an n-dimensional vector space
over F and a;x1; : : : ;xk are elements of V then define a set

Q(a;x1; : : : ;xk) = fa+α1x1 + � � �+αkxk : αi = 0;1g:

Thus Q(a;x1; : : : ;xk) is a translate of the 0-1 linear combinations of the xi.

Lemma 1. For all ε > 0 there is a C depending only on q and ε such that if A is a subset of V that does

not contain 3 collinear points and jAj> εjV j, then there are a;x1; : : : ;xk in V such that

Q(a;x1; : : : ;xk)� A;

k >
log log jV j

log(q)
+C = O(log2 jV j);

x1; : : : ;xk are linearly independent:

Remark on notation. Throughout this paper jAj denotes the size of a set A, logm(x) denotes the m-fold
iterated logarithm log(log(� � � , and o(x) and O(x) refer to the behavior of functions as x ! ∞.

Proof. First we show by induction on d that if A is a subset of V with jAj � td , where td = 4jV j1�1=2d
,

then there are a;x1; : : : ;xd in V with Q(a;x1; : : : ;xd) contained in A. For d = 1 the result is trivial. Take
d � 2 and assume the result for d� 1. Assume that A = fa1; : : : ;atg is a subset of V with jAj = t � td .
Note that �

td
2

�
� t2

d=4 = 4jV j1�2�(d�1)
� jV j= td�1jV j:

Hence more than td�1 of the diffrerences ai � a j, i > j, are equal; say, fwg = faik � a jk : 1 � k �

td�1g. Now let A0 = fa jkg and apply the induction hypothesis to A0 to get a;x1; : : : ;xd�1 in V with
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Q(a;x1; : : : ;xd�1)� A0. Because of the definition of w and A0 it follows that if x0 is in A0 then x0+w is in
A. Thus Q(a;x1; : : : ;xd�1;w)� A, as required.

Now observe that if
d =

log log jV j� log log(4=ε)

log(2)

then td = εjV j. The above argument then shows that we can find

Q(a;x1; : : : ;xd)� A

with d > log2 jV j= log(2)+C, where C is the generic symbol for a constant that depends on ε and q but
not on n = dimF V .

Now we make use of the assumption that A contains no 3 collinear points.

Claim. The linear combinations a+∑αixi in the Q(a;x1; : : :) constructed above are distinct.

Proof. If two such combinations are equal, say,

a+∑αixi = a+∑βixi; αi;βi in f0;1g;

then we might as well assume that αi 6= βi for all i. Find j such that α j = 1. Then

x j +∑αixi = ∑βixi;

where the sums now run over all i 6= j. Then the three vectors

u = a+∑βixi + x j;

v = a+∑βixi;

w = a+∑αi + xi

are collinear elements of A; indeed by the definition of x j

w� v = ∑αixi�∑βixi =�x j = v�u:

This finishes the proof of the claim.

Now we use the Claim to extract a linearly independent subset from x1; : : : ;xd of sufficient size.
We now know that jQ(a;x1; : : : ;xd)j = 2d . The vectors x1; : : : ;xd must therefore span a linear sub-

space of dimension at least k, where
qk � 2d < qk+1;

i.e., k' (log(2)=(log(q))d. Deleting the dependent xi and renumbering gives us the desired set x1; : : : ;xk

with

k >
log2 jV j
log(q)

+C:

This finishes the proof of Lemma 1.
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For the next lemma we take V and F as above except that now F must be a prime field with p

elements where p is an odd prime. To fix the ideas let W be an m-dimensional linear subspace of the
n-dimensional F-vector space V and let W 0 be a translate of W (one could also let W 0 be an arbitrary
affine space for an F-vector space W ). Choose a basis x1; : : : ;xm for W and let

P = fα1x1 + � � �+αmxm : αi = 0;1g

be the 0-1 linear combinations of the basis elements.
Throughout the following lemma let fk(x) denote the real-valued function on [0;1] given by

fk(x) = x+
2

k�1
x(x�1) =

k+1
k�1

x�
2

k�1
x2:

Lemma 2. If A is a subset of W 0 with density a then the density of A+P is at least fp(a); i.e.,

jAj= ajW 0j implies jA+Pj � fp(a)jW 0j:

Remarks The statement is trivially true for the extreme cases a = 0 or a = 1. The statement is false if
W 0 is an affine space over Fq, q = pd , d > 1. Indeed, if A is the Fp span of P in W 0 =W then A+P = A

which contradicts the bound given.

Proof. The proof is by induction on m. For m = 1 and a 6= 0;1, we have

jA+Pj � jAj+1 = ajW j+1 = ap+1�
�

a+
2

p�1
a(1�a)

�
p

since a(1�a)� 1
4 , so that

2p
p�1

a(1�a)�
p

2(p�1)
� 1:

Now assume that the lemma is true for all spaces of dimensions smaller than m. Write

W 0 =
[

Wr; r in F = Fp;

where each Wr is an affine hyperplane and

Wr =W0 + r � xm:

(If we think of the xi as the standard basis vectors in W 0 = Fm then we could take Wr to be the set of
vectors whose last coordinate was equal to r.)

To simplify the notation let P0 be the 0-1 linear combinations of x1; : : : ;xm�1 and let x = xm. Put
Ar = A\Wr. Then elements of A+P are of two kinds; either they are in

Ar +P0 �Wr

for some r in F , or they are in
Ar +P0+ x �Wr+1
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for some r in F . By counting up the elements of A+P that are of the first kind and then including any
elements of the second kind left over we can bound jA+Pj from below:

jA+Pj �∑ jAr +P0j+∑sup(0; jAr +P0j� jAr+1 +P0j); (1)

where both summations are over all r in F = Fp. To bound the second term we need an easy estimate:

Sublemma. If k � 2 and y1; : : : ;yk are real numbers then

k

∑
i=1

sup(0;yi+1� yi)� yb� yc

for any b and c (where we let yk+1 be another name for y1).

Proof. Use induction on k together with the fact that

sup(0;v�u)+ sup(0;w� v)� sup(0;w�u)

(which is easy to check by enumerating the possible cases). End of sublemma.

Now let ar = jArj=jWrj be the density of Ar in Wr. Note that the density a of A in W 0 is the average
of the ar. Apply the sublemma to the second term in (1) to get

jA+Pj � ∑
r2F

jAr +P0j+ jAb +P0j� jAc�P0j

= 2jAb +P0j+ ∑
r 6=b;c

jAr +P0j:

Now choose b so that ab is the largest of the various ai and choose c so that ac is the smallest of the ai.
Divide by jWrj= jW j=p and use the inductive assumption to get

p
jA+Pj
jW j

� 2 fp(ab)+ ∑
r 6=b;c

fp(ar):

Since Lemma 2 just says that jA+Pj=jW j is at least as big as fp(a) it is clear that the proof of the lemma
will be finished if we can demonstrate the following property of the function fk(x):

Claim. If k � 3 and we are given real numbers in [0;1] satisfying

0� y1 � �� � � yk � 1

then
fk(y2)+ fk(y3)+ � � �+ fk(yk�1)+2 fk(yk)� k fk

�
y1 + � � �+ yk

k

�
:

Proof of the claim. We work backwards. Write the desired inequality as

fk(yk)� fk(y1)� k � fk(ȳ)� fk(y1)��� �� fk(yk);
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where ȳ denotes the average of the yi. If we plug in the definitoin of

fk(x) =
k+1
k�1

x�
2

k�1
x2

then all of the linear terms in the yi on the right hand side cancel. Multiply by k(k�1)=2. The result is

k(k+1)
2

(yk� y1)� k(y2
k � y2

1)��(kȳ)2 + ky2
1 + � � �+ ky2

k

= ∑
i> j

(yi� y j)
2:

The left hand side can be rewritten, after doing a little juggling, as

k(k�1)
2

(yk� y1)
2 + k(yk� y1)

�
k+1

2
�

k+1
2

yk +
k�3

2
y1

�
:

The desired inequality is now evident since the second term in the preceding expression is positive and
(yk� y1)

2 is greater than each of the k(k�1)=2 terms of the form (yi� y j)
2. End of Lemma 2

3 Theorem

In this section we prove the following result.

Theorem. Let p be an odd prime and F the field with q = pd elements. For every ε > 0 there is an N(ε)

such that if V is an affine space over F with jV j � N(ε), and A is a subset of V with jAj � εjV j, then A

contains 3 collinear points.

Proof. Put N = jV j = qn and let f (N) denote the largest possible size of a subset of V that does not
contain 3 collinear points. We shall call such a subset “line-free." The goal is to prove that f (N) = o(N)

as N becomes large.
First note that if V is an F vector space then it can be regarded as an Fp vector space by restriction

of scalars. If fu;v;wg is a set of collinear points in V regarded as an Fp vector space then it is certainly
a collinear set if V is regarded as an F vector space. Thus any line-free set over F is also a line-free set
if V is thought of as an Fp vector space.

Thus the theorem for arbitrary q follows from the theorem for prime fields so we begin by fixing
q = p = an odd prime and considering affine spaces V over F = Fp. At any stage we are free to choose
an identification V �= Fn since the notion of collinearity is independent of the affine space isomorphism
that is chosen.

Let
V =

[
Vr; r 2 F = Fp

be a disjoint union of n� 1 dimensional affine subspaces. (For instance, we could take Vr to be the set
of elements of V �= Fn whose nth coordinate is equal to r.) The intersection of a line-free set in V with
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each of the Vr is any n�1 dimensional line-free set. Therefore f (pn)� p � f (pn�1)) so that the sequence
f (pn)=pn is decreasing to a limit

lim
N!∞

f (N)

N
= c:

The Theorem asserts that c = 0.
Assume that c > 0. Choose ε > 0 with ε < c2=8p and let N0(ε) have the property that if A is a

maximal line-free set in V and jV j � N0(ε) then

(c� ε)jV j< jAj< (c+ ε)jV j; (2)

Now choose N to be very very very large (i.e., the order of exp(exp(exp(N0(ε))))) and let A be a line-
free set in V that is of maximum size where jV j = N. The exact conditions that we need on N are that
the estimate (2) should apply to vector spaces with log3 N elements and that a certain explicit o(N) term
that will arise later should be less than c2N=4.

Write V =
S

Vr as above and let Ar = A\Vr. Even though Ar is not necessarily a maximal line-free
set inside Vr we can still get a lower bound on its size

jArj= jAj�∑
s6=r
jAsj> (c� ε)N� (p�1)(c+ ε)

N
p

= (c� (2p�1)ε)
N
p
: (3)

Note that if u is in V0 and v is in V1 then there is a unique w in Vr such that u;v; and w are collinear (in
fact w = (1� r)u+ rv). Thus elements in A0 and A1 have the effect of excluding certain elements of Vr

from being in Ar.
In order to exploit this idea apply Lemma 1 to the subset A1 of V1 (which can be done since the

density of A1 in the affine space V1 is at least c� (2p�1)ε > 0). We get a in A1 and x1; : : : ;xk such that
the xi are linearly independent, k = O(log2 N), and

Q(a;x1; : : : ;xk) = fa+α1x1 + � � �+αkxk : αi = 0;1g � A1:

Define Q0 = fag and for 1� i� k define

Qi = fa+α1xi + � � �+αixig � Qk(a;x1; : : : ;xk):

For r 6= 0;1 put

Mi;r = fw 2Vr :there is a collinear set u;v;w

with u in A0 and v in Q1g:

Two immediate observations are that
Mi;r \Ar = /0
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and that
jMi;rj � jM0;rj= jA0j> (c� (2p�1)ε)

N
p
: (4)

Also we will need the following easy observation.
Fact. If u0;u1, and ur are collinear, where ui is in Vi, then u0;u1 + v, and ur + rv are collinear.
This implies that

Mi+1;r = Mi;r [ (Mi;r + rxi+1):

At this point we fix for the duration of the proof an element r of F , r 6= 0;1. To simplify the notation put
Mi;r = Mi.

Since we must certainly have jMkj � N the sequence of numbers jMi+1 nMij sums to at most N and
therefore the “average" value is less than N=k ' O(N= log2 N). Thus we can find a consecutive run
i+1; i+2; : : : ; i+m with

jM j+1 nM jj<
N

log3 N
; i+1� j � i+m;

for m as large as k= log3 N ' O(log2 N= log3 N).
In fact we merely take such a run with m such that

N0(ε)� pm < log3 N

so that m = O(log4 N). Fixing i and m as above let

W = hx j : i+1� j � i+mi

be the linear space spanned by the indicated x j. Let

P =

(
i+m

∑
j=i+1

α jx j : α j = 0;1

)

be the 0-1 linear combinations of the given basis of W . To simplify the notation even further put M = Mi.
By the Fact above together with the definitions

M+ rP�Mi+m:

Consequently

jM+ rPnMj< m
N

log3 N
= O

�
N log4 N
log3 N

�
= o(N) (5)

since Mi+m �M+ rP is obtained from M by a sequence of m steps of adding at most N= log3 N vectors.
Since the coset (=translate) a+W of the subspace W is contained in V1 there is a coset of W contained

in Vr and hence we can find a decomposition

Vr =
[

Ws

in which each of the Ws is a coset of the vector space W . Each of the Ws has jW j= pm elements and there
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are (N=p) � p�m ' O(N= log3 N) cosets.
We want to bound the size of Ar by an expression that will contradict estimate (3) above. For each

coset Ws let Ms = M \W � s and let as denote the density jMsj=jWsj. If as is large then only a few
elements of Ws can belong to Ar (namely, the complement of Ms). If as is small then we can use the
estimate in (2) applied to Ws since we chose jWsj= jW j= pm �N0(ε). The Ms with intermediate density
are bad; all that can be done is to bound the nubmer of such cosets.

With these remarks in mind we define three different types of cosets:

Ws is dense if as > 1�1=m;

Ws is bad if 1=m < as < 1�1=m;

Ws is sparse if as < 1=m;

Let S;B and D denote the number of elements in, respectively, sparse, bad, and dense cosets so that
S+B+D = jVrj= N=p. We use the definitions in two ways. First note that by the remarks above

jArj< D=M+B+(c+ ε)S = B+(c+ ε)S+o(N): (6)

Second, note that the definitions enable us to bound M from above; using (4) gives

(c� (2p�1)ε)
N
p
� jMj< D+B+

S
m

= D+B+o(N)

=
N
p
�S+o(N)

or
S < (1� c+(2p�1)ε)N=p+o(N):

Putting this into (6) gives

jArj< B+(c+ ε)(1� c+(2p�1)ε)N=p+o(N): (7)

Now we show that B = o(N) and then show how the upper bound in (7) contradicts the lower bound
in (3),

Let Ws be a bad coset and as above let as be the density of Ms in Ws. Apply Lemma 2 to the subset
Ms of Ws (with rP playing the role of P in the Lemma) to get

jMs + rPj= jMsj+ jMs + rPnMsj �

�
as +

2
p�1

as(1�as)

�
jWsj:

Since Ws is bad we must have 1=m < as < 1� 1=m so that the “new" elements that are in Ms + rP but
not in Ms can be bounded by

jMs + rP=Msj �
2

p�1
as(1�as)jW j �

2
p�1

1
m2 jW j:
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Using (5) above and summing over each of the B=jW j bad cosets gives

mN
log3 N

> jM+ rPnMj � ∑
s bad

jMs + rPnMsj �
B
jW j

�
2

p�1
�

1
m2 jW j

so

B <
m3N(p�1)

2log3 N
= O

�
[log4 N]3N

log3 N

�
= o(N): (8)

Combining (8) with (3) and (7) gives

(c� (2p�1)ε)
N
p
< jArj< (c+ ε)(1� c+(2p�1)ε)

N
p
+o(N);

where the o(N) term could be written out explicitly if desired. This can be rearranged to say

c2 < ε(2pc�2c+2p)+(2p�1)ε2 +
o(N)

N
< 4pε +2pε

2 +o(N)=N < 6pε +o(N)=N:

It is easy to see that this contradicts the assumptions ε < c2=8p and o(N)=N < c2=4 made at the beginning
of the proof. Thus the assumption that c is positive is untenable and the proof of the theorem is finished.

Remark. The arbitrary element r 6= 0;1 of F can be chosen explicitly (just after the “Fact" above)
to give a slightly stronger result. If r = 2 then the proof actually shows that sufficiently large subsets of
sufficiently large affine spaces contain three “equally spaced" collinear points of the form x;x+y;x+2y.

4 Remarks

Possible Generalizations

The well-known Hales-Jewett Theorem [7] says that for all finite sets F and r � 1 there is an
n = n(r;F) such that if the points of Fn are colored using r colors then there is a monochromatic
combinatorial line. (A set L � Fn is a combinatorial line if jLj = jF j and there is a decomposition
f1;2; : : : ;ng= S[T with the following property. For i in S the projection from L onto the ith coordinate
is a constant mapping (with the constant possibly depending on i). For i in T the projection from L

onto the ith coordinate is a fixed isomorphism p : L 7! F . One could visualize a combinatorial line as
an jF j � n array of elements of F such that the columns were either constant (with possibly different
constants for different columns) or else run through all elements of F in some fixed order.)

One would like to be able to prove the density version of the Hales-Jewett result to the effect that
f (N) = o(N), where f (jFnj) is the size of the largest subset of Fn not containing a combinatorial line.

If we take jF j= 3 in the Theorem above then 3 collinear points form an affine line. An affine line in
Fn could be viewed as a 3�n array with columns that are either constant or else run through all of the
elements of F in any order. Perhaps one key to extending the proof given above to combinatorial lines
would be a drastically improved version of Lemma 1

10



A very general Ramsey-type theorem in a geometric context follows from the Hales-Jewett Theorem.
This was conjectured by Rota and proved by Graham, Rothschild, and Leeb (see the elegant proof in [11];
also [3,5,6,14]). It says that for any finite field F there is an n = n(t;k;r;F) such that if the t-dimensional
affine subspaces of Fn are colored with r colors then some k-dimensional subpsace has all of its t-
dimensional subspaces having the same color. The word “affine" can be replaced throughout by “linear"
or “projective."

It is natural to ask for “density versions" of this theorem or its special cases.
As a matter of further detail, in the t = 0 case the Hales-Jewett Theorem actually gives not just

a monochromatic k-dimensional affine subspace, but in fact a monochromatic “combinatorial k-space"
whose definition is a natural extension of the definition of a combinatorial line. Density versions of this
result would be very strong; they would imply the t = 0 case of the density versions of the geometric
theorems.

The case in which F is the set, or field, with 2 elements provides some weak evidence in favor of
these conjectures. The density version of the Hales-Jewett Theorem is true by using Sperner’s Lemma [4]
and the density version of the t = 0 case of the geometric theorem follows from Lemma 1 immediately.

Corollary to Lemma 1. For every integer k and every ε > 0 there is an n(ε;k) such that if V is an

n-dimensional affine space over F2, n � n(ε;k), and A is a subset of V with jAj> εjV j, then A contains

a k-dimensional affine subspace.

Note that the main result of this paper is still open for field of order 2n, n > 1. It seems that it is
necessary to find something to replace the role of Lemma 2.

Finally note that the theorem in Section 3 is a density version of a geometric Ramsey Theorem only
in the case jF j= 3 (since this is the only case in which three collinear points form a complete affine line).
In a similar vein one could look at sets that do not contain 4 collinear (or coplanar?) points.

An Application to Coding Theory

Let Pn(F) denote the usual n-dimensional projective space over a finite field F . A subset A of Pn(F)

is said to be an ovaloid if it is maximal with respect to the property of not containing 3 collinear points.
Ovaloids can be used to produce codes that can correct one error and detect three; in the cases n = 2

and n = 3 they have a nice geometrical structure. Little is known about ovaloids in P
n(F) for n > 3

(see [8] and [10] and the references therein).
In the case in which F has odd characteristic our main result implies the density of ovaloids must be

asymptotically zero. We are grateful to A. Odlyzko and R. Graham for bringing this to our attention.

Proposition. Let F be the field with q elements, q odd. Then for all ε > 0 there is an n(ε) such that if n

is larger than n(ε) and A is an ovaloid in Pn(F) then jAj< εjPn(F)j.

Proof. Let n0 be the integer such that if n � n0 then any subset of Fn of density bigger than ε=2 must
contain 3 collinear points; the existence of n0 is guaranteed by the theorem in Section 3. Define

n(ε) = n0 + logq(2=ε);

where logq denotes logarithm to the base q.
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It is a standard fact that projective space can be decomposed into a union of affine spaces as

P
n(F)�= Fn[Fn�1[�� �[F1[F0:

If A is an ovaloid in Pn(F) and n � n(ε) then we can crudely estimate the size of A by breaking it into
two parts:

jAj= jA\ (Fn[�� �[Fn0)j+ jA\ (Fn0�1[�� �[F0)j:

Use the definition of n0 for the first term and include the whole subset in the second term; the result is

jAj �
ε

2
(qn + � � �+qn0)+(qn0�1 + � � �+1):

After summing the geometric series and using the definition of n(ε) we get jAj=jPn(F)j< ε as desired.
This finishes the proof of the Proposition.

It is clear that the estimates on the size of line-free sets implied by the above proposition (which
depend on the estimates implicit in the proof of the Theorem in Section 3) are very poor. It would be
interesting to describe the size of ovaloids (or line-free sets in Fn) more accurately. In order describe the
known values in the case F = F3 let f (n) = the size of the maximal line-free set in Fn and let g(n) = the
size of the maximal line-free set in Pn(F) (i.e., the size of an ovaloid). By various calculations (see [8]
for the case of ovaloids) the following values are known:

f (1) = 2; g(1) = 2;

f (2) = 4; g(2) = 4;

f (3) = 9; g(3) = 10;

f (4) = 20; g(4) = 20;

f (5)� 45; g(5) = 56

(the inequality is almost certainly an equality).
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