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Abstract

For positive integers s and t, let f (s; t) denote the smallest positive integer N such that every 2-

coloring of [1;N] = f1;2; : : : ;Ng has a monochromatic homothetic copy of f1;1+ s;1+ s+ tg.

We show that f (s; t) = 4(s + t) + 1 whenever s=g and t=g are not congruent to 0 (modulo 4),

where g = gcd(s; t). This can be viewed as a generalization of part of van der Waerden’s theorem

on arithmetic progressions, since the 3-term arithmetic progressions are the homothetic copies of

f1;1 + 1;1 + 1 + 1g. We also show that f (s; t) = 4(s + t) + 1 in many other cases (for example,

whenever s > 2t > 2 and t does not divide s), and that f (s; t)� 4(s+ t)+1 for all s; t.

Thus the set of homothetic copies of f1;1+s;1+s+ tg is a set of triples with a particularly simple

Ramsey function (at least for the case of two colours), and one wonders what other “natural” sets of

triples, quadruples, etc., have simple (or easily estimated) Ramsey functions.

1 Introduction

Van der Waerden’s Theorem on Arithmetic Progressions [5] states that for every positive integer k there
exists a smallest positive integer w(k) such that for every 2-coloring of [1;w(k)] = f1;2; : : : ;w(k)g, there
is a monochromatic k-term arithmetic progression. (In other words, if [1;w(k)] is partitioned in any
way into two parts A and B, then either A or B must contain a k-term arithmetic progression.) The only
known non-trivial values of w(k) are w(3) = 9, w(4) = 35, w(5) = 178. Furthermore the estimation of
the function w(k) for large k is one of the most outstanding (and presumably one of the most difficult)
problems in Ramsey theory. For a discussion of this, see [2].

The function w(k) is often called the Ramsey function for the set of k-term arithmetic progressions.
Landman and Greenwell [3, 4] considered the Ramsey function g(n) of the set of all n-term sequences
that are homothetic copies (see the definition below) of f1;2;2+ t;2+ t + t2; : : : ;2+ t + t2 + � � �+ tn�2g

for some positive integer t. They obtained a lower bound for g(n) and an upper bound for g(r)(3), where
the (r) indicates that r colours are used. Other “substitutes” for the set of k-term arithmetic progressions
were introduced in [1].

In contrast, in this paper we consider the Ramsey function associated with a much smaller set of
sequences, namely the set of homothetic copies of f1;1+ s;1+ s+ tg for given positive integers s and t.

�The first and third authors were partially supported by NSERC.
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A homothetic copy of f1;1 + s;1 + s + tg is any set of the form fx;x + ys;x + ys + ytg, where x

and y are positive integers. From now on, let us agree to use the term “(s; t)-progression” to refer to a
homothetic copy of f1;1+ s;1+ s+ tg.

Instead of considering 3-term arithmetic progressions, as in the case k = 3 of van der Waerden’s
theorem, we consider the set of (s; t)-progressions for given positive integers s and t. (Note that the
(1;1)-progressions are the 3-term arithmetic progressions.)

For positive integers s and t we define f (s; t) to be the smallest positive integer N such that every
2-colouring of [1;N] has a monochromatic (s; t)-progression. Note that f (s; t) = f (t;s). We will use this
fact several times.

We show that for all positive integers s and t, if s=g 6� 0 and t=g 6� 0 (mod 4), where g = gcd(s; t),
then f (s; t) = 4(s+ t)+1. A special case of this is w(3) = f (1;1) = 9. Thus this result can be viewed as
a generalization of the case k = 3 of van der Waerden’s theorem.

We also show that f (s; t) � 4(s+ t)+1 for all s and t, and we show that even if s=g � 0 or t=g � 0
(mod 4), the equality f (s; t) = 4(s+ t)+1 still holds, except for a small number of possible exceptions.
For example, we are unable to find the exact value of f (4m;1), although we show in Theorem 4 that
4(4m+1)� f (4m;1)� 4(4m+1)+1. The remaining cases where f (s; t) is unknown are described in
Section 4.

2 Upper bounds

First we give a simple proof of the weak bound f (s; t) � 9s + 8t, which is subsequently refined (in
Theorem 2 below) to give the stronger bound f (s; t)� 4(s+ t)+1. The equality w(3) = 9 will be used
in our proof of this weak bound, but will not be used again.

We prove f (s; t) � 9s + 8t by contradiction. Assume that f (s; t) > 9s + 8t, and let [1;9s + 8t]

be 2-coloured, using the colours Red and Blue, in such a way that there is no monochromatic (s; t)-
progression. Since w(3) = 9, the set fs;2s;3s; : : : ;9sg contains a monochromatic (say in the colour Red)
3-term arithmetic progression. Let us suppose, in order to simplify our notation, that this Red progression
is fs;5s;9sg. (In all other cases, the argument is essentially the same.)

Consider the (s; t)-progressions fs;5s;5s+4tg, f5s;9s;9s+4tg, fs;9s;9s+8tg. Since by assumption
none of these is monochromatic, and s, 5s, 9s are all Red, it follows that f5s+ 4t;9s+ 4t;9s+ 8tg is a
Blue (s; t)-progression, a contradiction, completing the proof.

The following theorem will be useful in obtaining both upper and lower bounds for f (s; t).

Theorem 1. Let s; t;c be positive integers. Then f (cs;ct) = c( f (s; t)�1)+1.

Proof. Let M = f (s; t). Let B be a 2-colouring of [1;c(M�1)+1]. Since every 2-colouring of [0;M�1]
contains a monochromatic (s; t)-progression, every 2-colouring of f1;c+ 1;2c+ 1; : : : ;(M� 1)c+ 1g
contains a monochromatic (cs;ct)-progression. Thus, f (cs;ct)� c(M�1)+1.

On the other hand, we know there is a 2-colouring, B, of [1;M�1] that contains no monochromatic
(s; t)-progressions. Define B0 on [1;c(M� 1)] by B0([c(i� 1)+ 1;ci]) = B(i), for i = 1; : : : ;M� 1. We
will show that B0 avoids monochromatic (cs;ct)-progressions, which will complete the proof.
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Assume, by way of contradiction, that x1;x2;x3 is a (cs;ct)-progression, contained in [1;c(M� 1)],
that is monochromatic under B0. Then there exists r > 0 such that x3 � x2 = rct, x2 � x1 = rcs. Let
y j =

�
x j=c

�
for j = 1;2;3. Then y3� y2 = dx3=ce�dx2=ce= rt, and similarly y2� y1 = rs.

Hence y1;y2;y3 is an (s; t)-progression. Also, B(y j) = B(
�
x j=c

�
) = B0(x j), for each j. This contra-

dicts our assumption that there is no monochromatic (s; t)-progression relative to the colouring B.

Note that this proof easily extends to a proof that if f (a1; : : : ;ak) = M, then f (ca1; : : : ;cak) = c(M�

1)+ 1, where f (a1; : : : ;ak) denotes the least positive integer N such that every 2-coloring of [1;N] will
contain a monochromatic homothetic copy of f1;1+a1;1+a1 +a2; : : : ;1+a1 +a2 + � � �+akg.

Theorem 2. For all positive integers s and t, f (s; t)� 4(s+ t)+1.

Proof. Let s; t be given. We may assume without loss of generality that s � t. We may also assume
that gcd(s; t) = 1, for if we knew the result in this case then, with g = gcd(s; t), Theorem 1 would give
f (s; t) = gd f (s=g; t=g)�1e+1 � g[4(s=g+ t=g)+1�1]+1 = 4(s+ t)+1.

Consider the following set of 20 triples contained in [1;4(s+t)+1], which are all (s; t)-progressions:

f1;s+1;s+ t +1g;fs+1;2s+1;2s+ t +1g

f2s+1;3s+1;3s+ t +1g;f3s+1;4s+1;4s+ t +1g

f1;2s+1;2s+2t +1g;fs+1;3s+1;3s+2t +1g

f2s+1;4s+1;4s+2t +1g;f1;3s+1;3s+3t +1g

fs+1;4s+1;4s+3t +1g;f1;4s+1;4s+4t +1g

fs+ t +1;2s+ t +1;2s+2t +1g;f2s+ t +1;3s+ t +1;3s+2t +1g

f3s+ t +1;4s+ t +1;4s+2t +1g;fs+ t +1;3s+ t +1;3s+3t +1g

f2s+ t +1;4s+ t +1;4s+2t +1g;fs+ t +1;4s+ t +1;4s+4t +1g

f2s+2t +1;3s+2t +1;3s+3t +1g;f3s+2t +1;4s+2t +1;4s+3t +1g

f2s+2t +1;4s+2t +1;4s+4t +1g;f3s+3t +1;4s+3t +1;4s+4t +1g

It is straightforward to check (under the assumptions that s � t and gcd(s; t) = 1) that except in the
cases s = 1;1� t � 3, the 15 integers which appear in these 20 triples are distinct. It is then a simple mat-
ter to check all 2-colourings of these 15 integers and verify that each 2-colouring has a monochromatic
triple from the above list of 20 triples. (If one identifies these 15 integers with the numbers 1,2,. . . ,15
via the correspondence

1 $ 1;s+1 $ 2;2s+1 $ 3;3s+1 $ 4;4s+1 $ 5;

s+ t +1 $ 6;2s+ t +1 $ 7;3s+ t +1 $ 8;4s+ t +1 $ 9;

2s+2t +1 $ 10;3s+2t +1 $ 11;4s+2t +1 $ 12;

3s+3t +1 $ 13;4s+3t +1 $ 14;4s+4t +1 $ 15;
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the resulting set of 20 triples contained in [1;15] has a particularly pleasing form.) The cases s = 1;1 �
t � 3 can be checked separately. In all cases we obtain f (s; t)� 4(s+ t)+1.

3 Lower bounds and exact values for f (s; t)

Theorem 3. Let s; t be positive integers, and let g = gcd(s; t). If s=g 6� 0 and t=g 6� 0 (mod 4) then

f (s; t) = 4(s+ t)+1.

Proof. The proof splits naturally into two cases.

Case 1. Assume that s=g and t=g are both odd. In view of Theorem 2, we only need to show that
f (s; t)� 4(s+ t)+1.

First, assume g = 1. Now colour [1;4(s+ t)] as

101010 � � �10 010101 � � �01;

where each of the two long blocks has length 2(s+t). Assume x;y;z is a monochromatic (s; t)-progression.
Then y = x+ ds and z = y+ dt, for some positive integer d. Let B1 and B2 represent [1;2(s+ t)] and
[2(s+ t)+1;4(s+ t)], respectively.

In case d is odd, then x and y have opposite parity, and y and z have opposite parity. Since x and y

have the same colour and opposite parity, x is in B1, while y is in B2. Hence z is in B2, so that y and z

cannot have the same colour, a contradiction.
If d is even, then x, y and z all have the same parity, so they all must be in the same Bi. But then

d(s+ t) = z� x � 2(s+ t), and hence d = 1, a contradiction.
If g is unequal to 1, then by Theorem 1 and the case in which g = 1, f (s; t) = g[ f (s=g; t=g)�1]+1�

g[4(s=g+ t=g)+1�1]+1 = 4(s+ t)+1. This finishes the proof of Case 1.

Case 2. Assume without loss of generality that s=2 � 2 (mod 4). First we assume that g = 1. Then
s � 2 (mod 4) and t is odd.

By Theorem 2, we only need to provide a 2-colouring of [1;4(s+ t)] that contains no monochromatic
(s; t)-progression. Let C be the colouring 11001100 � � �1100 (i.e., s+ t consecutive blocks each having
the form 1100).

We proceed by contradiction. Assume that x;y;z is a monochromatic (s; t)-progression. So there
exists a d > 0 such that y� x = ds and z� y = dt. By the way C is defined, if C(i) = C( j) and j� i is
even, then 4 divides j� i. Now since z� x = d(s+ t)� 4(s+ t)�1, we must have that d < 4. The case
d = 2 is impossible, for if d = 2, then C(z) =C(x), z� x = d(s+ t) is even, but 4 does not divide z� x,
a contradiction. Hence d is odd. But then, since s � 2 (mod 4), y� x is even yet 4 doesn’t divide y� x,
again a contradiction.

This shows that f (s; t)� 4(s+ t)+1 in the case g = 1.
If g is unequal to 1, we proceed just as at the end of Case 1.

Suppose that s=g � 0 (mod 4), where g = gcd(s; t). Then t=g is odd, and in the case t=g = 1, that is,
t divides s, we have the following result.
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Theorem 4. Let m; t be positive integers. Then either

f (4mt; t) = 4(4mt + t)� t +1 or f (4mt; t) = 4(4mt + t)+1:

Proof. By Theorem 1, it is sufficient to show that 4(4m+1)� f (4m;1)� 4(4m+1)+1. By Theorem
2, we only need to show that 4(4m+1)� f (4m;1). Thus it suffices to find a 2-colouring of [1;16m+3]
that avoids monochromatic (4m;1)-progressions. Let χ be the colouring 1A0B0C1D0, where

A = 00110011 � � �0011 has length 4m

B = 11001100 � � �11 has length 4m�2

C = 11001100 � � �1100 has length 4m

D = 00110011 � � �0011 has length 4m:

Assume x;y;z is a monochromatic (4m;1)-progression. We shall reach a contradiction. We know
there exists a positive integer d such that y� x = 4md and z� y = d. Hence, d(4m+ 1) � 16m+ 2, so
that d � 3. Let

S1 = [2;4m+1] (corresponds to A above)

S2 = [4m+3;8m] (corresponds to B above)

S3 = [8m+2;12m+1] (corresponds to C above)

S4 = [12m+3;16m+2] (corresponds to D above).

Case 1. d = 1. Then y;z belong to the same Si, for some 1� i� 4. Denote by S(i; j) the jth element of
Si. We see that y = S(i; j) for some odd j. Note that for each even p, if i = 2 or 4, then χ(S(i�1); p) is
unequal to χ(S(i; p�1)). Now if i= 2 or i= 4, then x= y�4m= S(i�1; j+1), so that (by the preceding
remark), χ(x) is different from χ(y), a contradiction. Now if i = 3 and j > 1, then y�4m = S(2; j�1),
and χ(x) = χ(y� 4m) is unequal to χ(y), a contradiction. If i = 3 and j = 1, then x = 4m+ 2 and
y = 8m+2, and these again have different colours.

Case 2. d = 2. Then y� x = 8m and z� y = 2. If χ(y) = χ(z) then y must be one of the following:
4m+1;8m;12m+1; and since y� x = 8m, this reduces the possibilities for y to only 12m+1. However
we see that χ(4m+1) is unequal to χ(12m+1), a contradiction.

Case 3. d = 3. Then y� x = 12m and z� y = 3. Clearly x belongs to [1;4m], so that y belongs
to [12m + 1;16m]. Now [1;4m] has colouring 1 0011 � � �001100 1 while [12m + 1;16m] has colour-
ing 0100110011 � � �001100. Hence, since χ(x) = χ(y), y belongs to the set f12m+ 3;12m+ 5;12m+

7; : : : ;16m�1g. Now z belongs to [12m+4;16m+3], so let’s compare the colouring of [12m+1;16m]

to that of [12m+ 4;16m+ 3]: [12m+ 1;16m] has colouring as noted above, while [12m+ 4;16m+ 3]
has colouring 0 11001100 � � �11 0. Hence, in order for χ(y) = χ(z), y must belong to the set f12m+

1;12m+2;12m+4;12m+6; : : : ;16mg, a contradiction.
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Theorem 5. Let s; t be positive integers such that s > t > 1 and t does not divide s. If bs=tc is even or

b2s=tc is even, where b�c is the floor function, then f (s; t) = 4(s+ t)+ 1. If bs=tc and b2s=tc are both

odd, then f (s; t) = 4(s+ t)+1 provided s,t satisfy the additional condition s=t =2 (1:5;2).

Proof. Let s; t satisfy the hypotheses of the theorem. By Theorems 1 and 2, it suffices to show that
f (s; t) � 4(s+ t)+1 under the additional assumption that gcd(s; t) = 1, hence throughout the proof we
assume gcd(s; t) = 1.

Let a = bs=tc and b = b2s=tc. Then s = at + r, where 0 < r < t. Also, 2s = 2at + 2r, so if 2r = t

we would have t = 2. However, since gcd(s; t) = 1, the case t = 2 is already covered by Theorem 3.
Therefore we assume throughout that proof that 2r 6= t.

Case 1. We assume that a is even and b is odd. Then b = 2a+1, 2r > t, and 2(s+ t) = 2(at +r)+2t =

(b�1)t +2r+2t = (b+2)t +(2r� t).
Hence we can colour [1;4(s+ t)] as follows. Let

C = QRQR � � �QRQJ RQRQ � � �RQRJ0;

where Q = 11 � � �1 and R = 00 � � �0 each have length t, J = 00 � � �0 and J0 = 11 � � �1 each have length
2r� t, and where each of Q and R appears b+2 times.

Suppose x;y;z is any (s; t)-progression in [1;4(s+ t)] with y� x = ds, z� y = dt. We will show that
fx;y;zg is not monochromatic. Clearly d � 3, since d(s+ t)z� x � 4(s+ t)�1.

If d = 2, then z� x = 2(s+ t), so C(z) 6= C(x). (This is because the colouring on the second half of
[1;4(s+ t)] is the reversal of the colouring on the first half.)

If d = 3, then, since z = y+3t and C(i) 6= C(i+ t) for all i > 2(s+ t), if C(y) = C(z) we must have
y � 2(s+ t); but then x = y� 3s � 2t � s. However, the conditions s > t, s = at + r, 0 < r < t, a even,
imply that s > 2t, hence x < 0, a contradiction.

Now assume that d = 1 and C(y) = C(z). Since z = y+ t, y must occur in the block J, so C(y) = 0.
Since J has length 2r� t < r, we see that y� r must occur in the block Q just to the left of block J, so
that y�at� r = x also occurs in a block Q, and C(x) = 1.

Hence there is no monochromatic (s; t)-progression with respect to the colouring C, therefore f (s; t)�

4(s+ t)+1. This finishes Case 1.

Case 2. We assume that a is odd and b is even. Again we have s = at + r, 0 < r < t, but now b = 2a,
2r < t, and 2(s+ t) = (b+2)t +2r.

Now colour [1;4(s+ t)] with the colouring

D = QRQR � � �QRK RQRQ � � �RQK0;

where Q;R are defined as in Case 1, and K = 11 � � �1;K0 = 00 � � �0 each have length 2r.
Assume x;y;z is an (s; t)-progression contained in [1;4(s+t)], with y�x = ds, z�y = dt; then d � 3.
If d = 2, then as in Case 1, D(x) 6= D(z).
If d = 3, and D(y) = D(z), then as in Case 1, y � 2(s+ t). In fact, since K and R have opposite

colours, y � 2(s+ t)�2r. On the other hand, y � 1+3s � 2s+ t + r+1, so y is an element of the last
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occurrence of R in [1;2(s+ t)], hence D(y) = 0. Then x = y� 3s � 2(s+ t)� 2r� 3s < t, so D(x) = 1
and D(x) 6= D(y).

Now assume d = 1 and D(y) = D(z). Then y belongs to the last occurrence of R in [1;2(s+ t)],
and y � i (mod t), where 2r < i � t. Hence, since a is odd, x = y� (at + r) lies in one of the Q’s, and
D(x) = 1, D(y) = 0.

Thus, no monochromatic (s; t)-progression exists in [1;4(s+ t)], hence f (s; t)� 4(s+ t)+1.

Case 3. We assume that both a and b are even. Then s = at + r, b = 2a, 0 < 2r < t, and 2(s+ t) =

(b+2)t +2r. Note that a � 2, since s > t.
We define the colouring E on [1;4(s+ t)] as follows. Let us use the notation � 0 = 1 and � 1 = 0.

Then we define, in turn,

(1) E(i) = 1, 1 � i � r,

(2) E(i) =� E(i� r)1, r < i � t,

(3) E(i) =� E(i� t), t < i � 2(s+ t),

(4) E(i) =� E(i�2(s+ t)), 2(s+ t)< i � 4(s+ t).

That is,
E = XY XY � � �XY L Y XY X � � �Y XL0;

where X has length t and consists of bt=rc blocks, each block of length r, followed by a single block of
length t�bt=rcr, the blocks alternating in colour; Y is the same as X , except the colours are reversed; L

is X restricted to [1;2r]; and L0 is the same as L, except the colors are reversed.
Let x;y;z be an (s; t)-progression contained [1;4(s+ t)], with y� x = ds, z� y = dt.
If d = 2, then by (4), E(x) =� E(z).
If d = 3 and E(y) = E(z), then y � 2(s+ t), hence x = y� 3s � 2t � s = 2t � (at + r) � �r < 0, a

contradiction.
If d = 1 and E(y) = E(z), then y � 2(s+ t). We consider two subcases.
The first subcase is y� i (mod t), r+1� i� t. Then y and y�r are in the same block (X ;Y or L) hence

by (2) E(y)=�E(y�r). By (3), and the fact that a is even, E(y)=�E(y�r)=�E(y�at�r)=�E(x).
The second subcase is y � i (mod t), 1 � i � r. Since E(y) = E(z) = E(y+ t), y must belong to the

block L, that is, y = (b+ 2)t + i = (2a+ 2)t + i, 1 � i � r. Since x = y� s = (2a+ 2)t + i� at � r =

(a+1)t +(i+ t� r), and 1� i+ t� r � t, by (3) E(x) =� E(i+ t� r). Also, since y = 2(s+ t)�2r+ i,
we have z = y+ t = 2(s+ t)+(i+ t�2r), so by (4), E(z) =� E(i+ t�2r). Since 1 � i+ t�2r � t, (2)
gives E(z) = E(i+ t� r) =� E(x).

Thus, under the colouring E, there is no monochromatic (s; t)-progression in [1;4(s + t)], hence
f (s; t)� 4(s+ t)+1.

Case 4. Assume that both a and b are odd, and s=t =2 (1:5;2). It follows that s = at + r, 0 < r < t,
b = 2a+1, t < 2r, and 2(s+ t) = (b+2)t +(2r� t). Also, a � 3, as a consequence of the assumption
s=t =2 (1:5;2).

Let p = t� r. Then p < t=2. Define the colouring F by setting, in turn,
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(5) F(i) = 1, 1 � i � p,

(6) F(i) =� F(i� p), p < i � p,

(7) F(i) =� F(i� t), t < i � 2(s+ t),

(8) F(i) =� F(i�2(s+ t)), 2(s+ t)< i � 4(s+ t),

That is,
F = ABAB � � �ABAM BABA � � �BABM0;

where A and B are the same as blocks X and Y in Case 3, except that p replaces r; M is B restricted to
[1;2r� t]; and M0 is the same as M with the colours interchanged.

Let x;y;z be an (s; t)-progression contained in [1;4(s+ t)], with y� x = ds, z� y = dt.
If d = 2, then by (8), E(x) =� E(z).
If d = 3 and E(y) =E(z), then y� 2(s+t), hence (since a� 3) x = y�3s� 2t�s= 2t�(at+r)< 0,

a contradiction.
If d = 1 and E(y) = E(z), then y � 2(s+ t), and we again consider two subcases.
The first subcase is y= ut+ i, 1� i� r. Then 1� i< i+ p= i+t�r� t, so by (6), F(i+ p) =�F(i).

Using (7) and the oddness of a, we get F(x) = F(y�at� r) = F(ut� (a+1)t + i+ t� r) = F(ut + i+

t� r) = F(ut + i+ p) =� F(ut + i) =� F(y).
The second subcase is y= ut+ i, r+1� i� t. Since F(y)=F(y+t) and M has fewer than i elements,

y must belong to the last occurrence of the block A in [1;2(s+ t)]. Since 2(s+ t) = (b+2)t +(2t � r),
this means that y = (b+1)t + i, hence by (7), F(y) = F(i). Since x = y�at� r = (b+1)t + i�at� r,
we have F(x) =� F(i� r) = F(i+ t� r) = F(i+ p) =� F(i) =� F(y).

Thus, under the colouring F , there is no monochromatic (s; t)-progression in [1;4(s + t)], hence
f (s; t)� 4(s+ t)+1.

4 Remarks

By Theorems 1 and 3, we would know the value of f (s; t) for all s; t provided we knew the value of
f (4m; t) when t is odd, and gcd(m; t) = 1. (Here we are using f (s; t) = f (t;s).) Theorem 4 shows
4(4m+ 1) � f (4m;1) � 4(4m+ 1)+ 1. Theorem 5 takes care of many of the cases where t > 1. For
example, Theorem 5 shows that f (4m;3) = 4(4m+3)+1 whenever 3 does not divide m. By examining
the cases not covered by Theorem 5, one sees that these are exactly the cases f (t + r; t) where 0 < r <

t < 2r, and 4 divides t or 4 divides t + r.
The computations f (4;1) = 20, f (8;1) = 36, f (12;1) = 52 suggest that perhaps f (4m;1) = 4(4m+

1) for all m � 1.
For positive integers r;a1; : : : ;an, let f (r)(a1; : : : ;an) denote the smallest positive integer N such that

every r-colouring of [1;N] ha a monochromatic homothetic copy of f1;1+a1; : : : ;1+a1 + � � �+ang. Of
course f (r)(a1; : : : ;an) always exists (by a statement of van der Warden’s theorem which involves any
number of colours), but perhaps one can say something about the rate of growth of f (r)(a1; : : : ;an) as
a function of a1 + � � �+ an. The computations f (2)(1;1;1) = 35, f (2)(1;1;2) = 38, f (2)(1;1;3) = 44,
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f (2)(1;1;4) = 56, f (2)(1;1;5) = 59 suggest that f (2)(1;1;n) does not grow linearly with n. Perhaps
f (2)(1;1;n)� c2n.

We have no idea of the growth rate of f (3)(s; t) as a function of s+ t.
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