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Abstract

A familyB of sequences has the Ramsey property if for every positive integer k, there exists a least

positive integer fB(k) such that for every 2-coloring of f1;2; : : : ; fB(k)g there is a monochromatic

k-term member of B. For fixed integers m > 1 and 0 � q < m, let Bq(m) be the collection of those

increasing sequences of positive integers fx1; : : : ;xkg such that xi+1�xi � q(mod m) for 1� i� k�1.

For t a fixed positive integer, denote by At the collection of these arithmetic progressions having

constant difference t. Landman and Long showed that for all m � 2 and 1 � q < m, Bq(m) does not

have the Ramsey property, whileBq(m)[Am does. We extend these results to various finite unions of

Bq(m)’s andA ’s. We show that for all m� 2,
S

q = 1m�1Bq(m) does not have the Ramsey property.

We give necessary and sufficient conditions for collections of the form B [ (
S

t2T At) to have the

Ramsey property. We determine when collections of the form Ba(m1) [Bb(m2) have the Ramsey

property. We extend this to the study of arbitrary finite unions ofBq(m)’s. In all cases considered for

whichB has the Ramsey property, upper bounds are given for fB .

1 Introduction

One of the oldest and most well-known theorems of Ramsey theory is van der Waerden’s theorem,
which says that for all k and r, there is a least positive integer w(k;r) such that for every partition of
f1;2; : : : ;w(k;r)g into r classes, at least one of the classes contains an arithmetic progression of length
k [13]. The estimation of w(k;r) has been, and remains, one of the more intriguing and difficult Ramsey
theory problems. In particular, it is still unknown whether w(k;2) (usually denoted more simply by w(k))
is bounded above by a tower of k’s having height k, while the best lower bounds for w(k) are of a much
smaller order of magnitude (see [3] for a general discussion).

More generally, if B represents any particular collection of sequences, we say B has the Ramsey

property if for every positive integer k, there exists a least positive integer fB(k) such that for every
partition of f1;2; : : : ; fB(k)g into two classes, at least one of the classes will contain a k-term member of
B. Clearly, wheneverB�C andB has the Ramsey property, we know that C has the Ramsey property
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and that fC (k)� fB(k) for all k. In particular, any collection C of sequences that contains the arithmetic
progressions has the Ramsey property; the corresponding Ramsey functions fC have been studied for a
variety of such collections C [2, 4, 6–12].

For collections not containing the arithmetic progressions, the behavior of the associated Ramsey
functions can be somewhat unpredictable. Of course, if the collection is too small, it will not have the
Ramsey property. For example, if d is a fixed positive integer, let Ad consist only of those arithmetic
progressions for which the difference between consecutive terms is d. Then it is a trivial matter to
partition the positive integers into two classes so as to avoid even 2-term members of Ad , and hence Ad

does not have the Ramsey property. In fact, it is known that if T is any finite set of positive integers,
then the family

S
d2T Ad does not have the Ramsey property [1]. For fixed integers m� 2 and 0� q < m

define a q(mod m)-sequence to be an increasing sequence of positive integers fx1; : : : ;xkg such that
xi+1�xi � q(mod m) for 1� i� k�1. It was shown in [5] that, for fixed m and q with q 6= 0, the family
of all q(mod m)-sequences,Bq(m), does not have the Ramsey property (the associated Ramsey function
fq(m)(k) is undefined for all k > 2). This is not surprising, if we think of a q(mod m)-sequence as an
arithmetic progression, modulo m, with constant difference q. Less expectedly, it turns out [5] that for
all m and q, the familyBq(m)[Am does have the Ramsey property, and its associated Ramsey function,
which we denote by fq(m);m(k), satisfies

fq(m);m(k) = mk2(1+o(1)):

In this paper we consider several situations that are more general than those dealt with in [5]. If
S = fai (mod mi)) : 1� i� ng is any set of congruence classes, we consider the family of sequences that
are ai (mod mi)-sequences for some i. For example, if

S = f1(mod 4) ;2(mod 3))g;

then the sequences f1;2;11g and f1;9;11g belong to the family, while f1;2;4g and f1;9;10g do not.
We ask: (i) For which choices of S will the family of sequences have the Ramsey property? (ii) For such
S, what is the rate of growth of the associated Ramsey function fS(k)?

In particular, we look at the family of arithmetic progressions modulo m, i.e.,
Sm�1

q=1 Bq(m). It is clear
that for almost all choices of k, m and q, the number of k-term arithmetic progressions modulo m is
considerably greater than the number of sequences belonging toBq(m)[Am. Yet, in Section 2 we show
that the arithmetic progressions modulo m do not have the Ramsey property. As a corollary, if T is a set
of positive integers, we are able to characterize those familiesBq(m)[(

S
t2T At) which have the Ramsey

property, and we give upper bounds for the associated Ramsey functions fq(m);T , which generalize known
results about fq(m);m from [5].

In Section 3, we first consider jSj= 2, and characterize those S that give rise to the Ramsey property.
We also give an upper bound for the associated Ramsey function. We then look at the function fS for
general S. We give sufficient conditions for fS(k) to be defined for all k, and show that for a large variety
of S’s, these conditions are also necessary. In Section 4 we consider a special case involving partitions
into r � 2 classes, and obtain an upper bound for the associated Ramsey function, where S consists of r

congruences. Section 5 includes some observations, based on computer output, concerning the sharpness
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of the bounds.
We make use of the following additional notation and terminology.
If i < j, the symbol [i; j] denotes the set fi; i+1; : : : ; jg.
A (k-term) arithmetic progression (or simply a.p.) is a sequence fa+ id : i = 0;1; : : : ;k�1g where

a;d > 0. For a fixed t > 0, an a.p. is called a t-a.p. if d = t. If m� 2 and 0� q < m, we call an increasing
sequence X = fx1; : : : ;xkg a k-term q(mod m)-sequence if xi+1 � xi � q(mod m) for 1 � i � k� 1. If
we drop the requirement that the sequence be increasing, we will call it a semi-q(mod m)-sequence. For
example f1;2;18;4;15;1g is a 6-term semi 1(mod 5)-sequence, but it is not a 1(mod 5)-sequence.

An r-coloring of a set A of positive integers is a function χ : A ! f1;2; : : : ;rg (i.e., it is a partition
of A into r classes). A coloring χ is monochromatic on a set Y if χ is constant on Y . Since most of this
paper deal with 2-colorings, we sometimes use the word coloring to indicate a 2-coloring.

Let S = fai (mod mi): 1 � i � ng be a set of congruence classes where 1 � ai < mi for all i, and
let T be a set of positive integers. The symbol fS;T (k) will denote the least positive integer such that
whenever [1; fS;T (k)] is 2-colored, there will be a k-term monochromatic ai (mod mi)-sequence for some
i 2 f1; : : : ;ng or a k-term monochromatic t-a.p., for some t 2 T . If fS;T (k) does not exist, we write
fS;T (k) = ∞. If S consists of a single congruence class q(mod m), we denote fS;T by fq(m);T ; if, in
addition, T = ftg, we use fq(m);t . If T = φ , we use the symbol fS rather than fS;T ; or in case jSj = 1 or
2, simply fa(m1) or fa(m1);b(m2), respectively.

As a more general notation, we use fq(m);T (k1;k2) to denote the Ramsey function corresponding to
k1-term q(mod m)-sequences or k2-term t-a.p.’s for some t 2 T . If~k = (k1;k2; : : : ;kn), fS(~k) represents
the least positive integer so that every 2-coloring of [1; fS(~k)] will contain a monochromatic ki-term
ai (mod m)-sequence for some ai (mod mi) 2 S.

Finally, when considering a Ramsey function associated with r-colorings we use the symbol f (r) in
place of f .

2 Using a Single Modulus

In [5] it was shown that when q 6= 0 the Ramsey number fq(m)(k) corresponding to q(mod m)-sequences
is infinite for all k � 3, while fq(m);m, the Ramsey function corresponding to q(mod m)-sequences or
m-a.p.’s, is always finite. More specifically, the following upper bounds for fq(m);m were obtained.

Theorem 1 (Landman and Long). Let m� 2, 1� q < m, and k;n� 2. Let e = gcd(q;m). If m=e is even,

then

fq(m);m(k;n)� m(k�1)(n�1)+(k�2)q+1 (1)

If m=e is odd, then

fq(m);m(k;n)� m[(k�2)(n�1)+1]+ kq� e+1 (2)

Theorem 1 deals with the case in which for some fixed m and q, S = fq(mod m)g and T = fmg. We
now consider the case in which S = fa(mod m) : 1 � a � m� 1g and T = φ , i.e., the case of the a.p.’s
modulo m. As the next theorem shows, the size of the collection of sequences does not, in itself, tell us
whether the corresponding Ramsey function is defined.

Theorem 2. Let m � 2 and S = fa(mod m) : 1 � a � m�1g. Then fS(k) = ∞ whenever k > dm=2e.
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Proof. Let m � 2 and consider the following 2-coloring, χ , of the positive integers. For 1 � x � dm=2e
let χ(x) = 0, and for dm=2e+1� x�m let χ(x) = 1. When x>m, let χ(x) = χ(x̄), where x� x̄(mod m)

and 1 � x̄ � m.
We will show that, with respect to χ , the maximum size of a monochromatic q(mod m)-sequence is

bounded above by
l

m
2gcd(q;m)

m
�
�m

2

�
for each q, 1 � q � m�1. From this it follows immediately that

fS(k) = ∞ if k >
�m

2

�
.

Let q be fixed (1� q�m�1), and let d = gcd(q;m), s=m=d. Now regard 1;2; : : : ;m as the elements
of the m-element cyclic group (where x̄+ ȳ = x+ y), and let H be the s-element cyclic subgroup of [1;m].
By elementary group theory, we know that

H = fq;2q; : : : ;sqg= fd;2d; : : : ;sdg: (3)

Now let x1 < x2 < � � �< xs be any s-term q(mod m)-sequence. Then xi+1 = xi +di for 1 � i � s�1,
with di � q(mod m), so that

fx1; : : : ;xsg= fx1;x1 +q; : : : ;x1 +(s�1)qg= x1 +H:

From (3) we see that the subset x1 +H of [1;m] forms an arithmetic progression with s = m=d terms
and common difference d. Exactly

� s
2

�
of these terms will be less than or equal to m=2, and hence

exactly
� s

2

�
terms will form a monochromatic set with respect to χ . Since χ(xi) = χ(xi), this shows that

if x1 < � � �< xt is a monochromatic q(mod m)-sequence, then t �
� s

2

�
, as required. [Note: one can also

show that if 1 � q � m=2, the maximum size of a monochromatic q(mod m)-sequence, with respect to
this same coloring, is exactly

l
m
2q

m
. We omit the details.]

As a consequence of Theorems 1 and 2, we are able to characterize, for given q and m, those sets T

such that fq(m);T (k) exists for all k. We also generalize the bounds of Theorem 1, which deals with the
case of T = fmg, to any set T containing some multiple of m.

Corollary 1. Let m � 2, 1 � q � m�1, and let T be a set of positive integers.

(a) fq(m);T (k)< ∞ for all k if and only if cm 2 T for some positive integer c.

(b) Let d = gcd(q;m), k, n � 2, and c � 1. Assume that cm 2 T .

If m=d is even, then

fq(m);T (k;n)� cm(k�1)(n�1)+(k�2)q+1: (4)

If m=d is odd, then

fq(m);T (k;n)� cm(k�2)(n�1)+m+ kq�d +1: (5)

Proof. Assume no multiple of m belongs to T . Then for each t 2T , every t-a.p. is an a(mod m)-sequence
for some a 2 f1; : : : ;m�1g. It then follows from Theorem 2 that fq(m);T (k) = ∞ for all k > m=2.

Now assume cm 2 T . Note that if fx1; : : : ;x(n�1)c+1g is an m-a.p., then fxic+1 : i = 0; : : : ;n�1g is a
cm-a.p. Hence,

fq(m);cm(k;n)� fq(m);m(k;(n�1)c+1):
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Inequalities (4) and (5) follow from (1) and (2), respectively.

3 Using an Arbitrary Set of Congruence Classes

We now direct our attention to the function fS for general S. The case in which jSj = 1 was considered
in [5]. The authors showed that if S consists of the single congruence class a(mod m), then as long as
a 6= 0 and k � 3, fS(k) = ∞. They also showed that the only case in which jSj = 1 and fS(3) < ∞ is if
q = 0, and that in fact, for all k � 2

f0(m)(k) = 2m(k�1)+1: (6)

We also see by Theorem 2, that if S = fa1 (mod m) ; : : : ;ar (mod m) : ai 6= 0 for 1 � i � rg, then
fS(k) = ∞ whenever k > m=2.

Before dealing with the most general set S, we first consider the case in which jSj = 2. We now
characterize those sets S = fa(mod m1) ;b(mod m2) : a;b 6= 0g for which the corresponding collection
of sequences has the Ramsey property (if a = 0 or b = 0 we see by (6) that fS(k) does exist for all k),
and provide an upper bound for the corresponding Ramsey function.

Theorem 3. Let m1;m2 > 1, let 1 � a < m1 and 1 � b < m2, and assume k > 3. Let d = gcd(m1;m2)

and m = lcmfm1;m2g. Then fa(m1);b(m2)(k) < ∞ if and only if dja or djb. Furthermore, for all k � 3, if

dja or djb, then fa(m1);b(m2)(k)< m(k�1)2.

Proof. First assume d divides neither a nor b. To prove fa(m1);b(m2)(k) does not exist, it suffices to
prove fa(d);b(d)(k) does not exist because any coloring of the positive integers that avoids monochromatic
q(mod d)-sequences also avoids monochromatic q(mod m1)- and q(mod m2)-sequences. Note also that
if χ is a 2-coloring of [1;d] that avoids monochromatic semi q(mod d)-sequences, then the coloring χ 0

of the set of positive integers defined by

χ
0( j) = χ(i) if j � i(mod d)

will avoid k-term monochromatic q(mod d)-sequences. Thus, to prove fa(m1);b(m2)(k) does not exist it
suffices to find a 2-coloring of [1;d] that avoids k-term monochromatic semi a(mod d)-sequences and k-
term monochromatic semi b(mod d)-sequences. Finally, we can assume a � d=2 and b � d=2, because
if q > d=2, then S = fx1; : : : ;xkg is a semi q(mod d)-sequence in [1;d] if and only if S = fxk; : : : ;x1g is
a semi (d�q)(mod d)-sequence.

We now give a coloring of [1;d] that avoids both 4-term monochromatic semi a(mod d)-sequences
and 4-term monochromatic semi b(mod d)-sequences. Assuming a < b (we may assume a 6= b, since,
as stated in the introduction, there is a 2-coloring of the positive integers that avoids monochromatic
a(mod d)-sequences), define the coloring χ recursively:

(i) χ(x) = 1 if 1 � x � a

(ii) χ(x) 6= χ(x�a) if a < x � b

(iii) χ(x) 6= χ(x�b) if b < x � d.
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It is apparent that there is no monochromatic 3-term semi b(mod d)-sequence in [1;d]. To show there is
no monochromatic 4-term semi a(mod d)-sequence, we consider two cases.

Case I. a � b=2.
Let Bi = [ib+ 1;(i+ 1)b] for i = 0; : : : ; j� 1 where j = bd=bc, and let B j = [ jb+ 1;d] (B j is empty if
b divides d). Assume x1; : : : ;x4 is a semi a(mod d)-sequence. Then x3 � x1 � e(mod d) and x4 � x2 �

f (mod d) where 0 � e, f � b. Since a � b=2, some pair xr, xr+1 must be in the same block Bi (for
otherwise x4� x2 > b or x3� x1 > b). Thus, by definition of χ , χ(xr) 6= χ(xr+1).

Case II. a > b=2.
Let A0 = [1;a], let Ai = [(i�1)b+a+1; ib+a] for i = 1; : : : ;h where h = b(d�a)=bc, and let Ah+1 =

[hb+1;d] (Ah+1 could be empty). Then each Ai is monochromatic and the Ai’s alternate in color. Assume
fx;y;zg is a monochromatic semi a(mod d)-sequence. If x and y are in different Ai’s, then y must be in
A0; but then χ(z) 6= χ(y). Therefore, we assume x and y are in the same Ai1 . So z =2 Ai1 . Thus, z 2 A0,
and hence χ(z+a) 6= χ(z). Thus there is no 4-term semi a(mod d)-sequence that is monochromatic.

Now assume d divides (say) a. We first consider the case in which m2
gcd(m2;b)

is even. Now a 6= 0
implies m1 6= d, so that there exists a positive integer c < m1=d such that

cm2 � a(mod m1) (7)

By (4), every 2-coloring of [1;cm2(k�1)2 + b(k�2)+1] contains either a monochromatic k-term a.p.
with difference cm2 or a monochromatic k-term b(mod m2)-sequence. Since

cm2(k�1)2 +b(k�2)+1 �
�m1

d
�1

�
m2(k�1)2 +(m2�1)(k�2)+1

< m(k�1)2;

the result follows from (7). The case in which m2
gcd(m2;b)

is odd is easily done in the same way, using (5)
instead of (4).

Remark. Since the coloring χ of [1;d] in the proof of Theorem 3 avoided both 4-term semi a(mod d)-
sequences and 3-term semi b(mod d)-sequences, we have actually shown the slightly stronger result that
if a � a0 (mod d) and b � b0 (mod d) with 1 � a0 � b0 � d�1, then fa(m1);b(m2)(4;3) = ∞.

We now direct our attention to the more general case in which jSj = n. The following sufficient
condition for fS to exist, and the corresponding upper bound, are immediate from Theorem 3.

Theorem 4. Let S = fai (mod mi) : 1 � i � ng with 1 � ai < mi for each i. For 1 � i < j � n, let

di j = gcd(mi;m j) and mi j = lcmfmi;m jg. If for some pair i < j, di j divides ai or a j, then

fS(k)< mi j(k�1)2 for all k � 3 (8)

We now wish to consider the converse of Theorem 4. In other words, if S and di j are defined as in
Theorem 4, and if fS is finite for all k, does it follow that for some i 6= j, di j divides ai or a j?
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Before proceeding, we give some results which simplify the determination of whether, given S, the
corresponding collection of sequences has the Ramsey property.

Lemma 1. Let S = fai (mod mi) : 1 � i � ng. Let m = lcmfm1; : : : ;mng and ~k = (k1; : : : ;kn). Then

fS(~k)=∞ if and only if there is an m-periodic coloring of the positive integers that avoids monochromatic

ki-term ai (mod mi)-sequences for all i.

Proof. Clearly, if fS(~k) < ∞, no m-periodic coloring can avoid monochromatic ki-term ai (mod mi)-
sequences for all i.

Now assume fS(~k) = ∞. Let C be a coloring of the positive integers that avoids monochromatic ki-
term ai (mod mi)-sequences for all i. Denote C by a sequence of 0’s and 1’s. For each positive integer j,
let C j represent that portion of the sequence C that is restricted to the interval [( j�1)m+1; jm]. There
are 2m possible colorings for each C j. So at least one of these 2m colorings must occur infinitely often in
C = C1C2 : : :. Say that B = C j1 = C j2 = � � � , where j1 < j2 < � � � . Now color the positive integers with
the coloring BBB : : :, and denote the coloring by D.

To complete the proof we will show that the m-periodic coloring D avoids ki-term monochromatic
ai (mod mi)-sequences for all i. Assume by way of contradiction that under D the sequence x1; : : : ;xki

is a monochromatic ai (mod mi)-sequence. For each s, 1 � s � ki, let ys be an element of C js such that
ys � xs (mod m). Then the C-color of ys is the same as the D-color of xs for each s. Thus, under C,
y1; : : : ;yki is a ki-term monochromatic ai (mod mi)-sequence, a contradiction.

Lemma 2. Let S = fai (mod m1) : 1 � i < mg. Let m = lcmfm1; : : : ;mng and~k = (k1; : : : ;kn). Then

fS(~k) < ∞ if and only if every 2-coloring of [1;m] contains, for some i, a monochromatic ki-term semi

ai (mod mi)-sequence.

Proof. Assume that for every 2-coloring of [1;m], there is a monochromatic ki-term semi ai (mod mi)-
sequence for some i. Let χ be an m-periodic coloring of the positive integers. Then, under χ , there is, for
some i, a monochromatic semi ai (mod mi)-sequence x1; : : : ;xki that is contained in [1;m]. For 1� j � ki,
let y j � x j (mod m) with y j 2 [( j�1)m+1; jm]. Then, since χ is m-periodic, y1; : : : ;yki is a (increasing)
monochromatic ai (mod mi)-sequence that is contained in [1;mki]. Since χ is an arbitrary m-periodic
coloring, by Lemma 1 we know that fS(k)< ∞.

Now assume there is a 2-coloring of [1;m] that avoids monochromatic ki-term semi ai (mod mi)-
sequences. Extend this coloring to an m-periodic 2-coloring of the positive integers. Relative to this
extended coloring, there is no monochromatic ki-term ai (mod mi)-sequence. Hence fS(~k) = ∞.

The following result tells us that to determine whether the collection of sequences corresponding to a
given S has the Ramsey property, it suffices to check whether the associated Ramsey function is defined
at one particular vector~k�.

Proposition 1. Let S = fai (mod mi) : 1� i� ng and~k� = (k�1; : : : ;k
�

n) where k�i =
mi

gcd(ai;mi)
for 1� i� n.

Then fS(k)< ∞ for all k if and only if fS(~k�)< ∞.

Proof. One direction is trivial. For the other direction, we proceed by contradiction. Suppose fS(k) = ∞

but that fS(~k�) < ∞. Let m = lcmfm1; : : : ;mng. By Lemma 1, let C be an m-periodic coloring of the
positive integers which avoids k-term monochromatic ai (mod mi)-sequences for all i.
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By the proof of Lemma 2, under the coloring C there exists, for some i, a monochromatic k�i -term
ai (mod mi)-sequence contained in [1;mk�i ]. Denote this sequence by x1; : : : ;xk�i

. Note that for each
positive integer r,

rmk�i + xi� [(r�1)mk�i + xk�i
]��ai(k�i �1)(mod m) :

Therefore,
rmk�i + x1� [(r�1)mk�i + xk�i

]� ai (mod mi)e

Since C has period m, the sequence

x1;x2; : : : ;xk�i
;mk�i + x1;mk�i x2; : : : ;mk�i + xk�i

;2mk�i + x1;

2mk�i + x2; : : : ;2mk�i + xk�i
; : : :

is an infinite monochromatic ai (mod mi)-sequence, contradicting the assumption that under C there is
no monochromatic k-term ai (mod mi)-sequence.

Theorem 3 tells us that, for the case in which jSj = 2, the converse of Theorem 4 holds. That is, if
d divides neither a1 nor a2 then fS(k) = ∞ for k large enough. This converse of Theorem 4 does not,
however, hold in the general case of jSj = n. In Proposition 2 we exhibit a special class of sets S for
which, for all i and j, gcd(mi;m j) divides neither ai nor a j, yet fS(k) is always finite.

Proposition 2. Let S = fai (mod mi) : i = 1;2;3g where for all i 6= j, gcd(mi;m j) divides neither ai nor

a j. Assume a1 = m1=2, and that a1;a2 are odd, and a3 is even. Assume m2 = 2b such that b is odd and

gcd(a1;b) = 1. Assume m3 is a divisor of 1
2 m1m2 = lcmfm1;m2g. Then fS(~k)< ∞ for all~k.

Proof. Let k�1 = 2, k�2 = m2
gcd(a2;m2)

, and k�3 = m3
gcd(a3;m3)

. Let m = 1
2 m1m2. By Proposition 1 and Lemma

2, it suffices to show that every 2-coloring of [1;m] contains, for some i, a k�i -term monochromatic semi
ai (mod mi)-sequence. Suppose that χ is a 2-coloring of [1;m] with no 2-term monochromatic semi
m1
2 (mod m1)-sequence and not k�2-term monochromatic semi a2 (mod m2)-sequence.

Let S0 = fm1;2m1; : : : ;(m=m1)m1g and, for 1� j �m1�1, let S j = j+S0 (mod m). Since there are
no 2-term monochromatic semi m1

2 (mod m1)-sequences, no member of S j could have the same color as
a member of S j+m1=2, for all j. So each S j is monochromatic.

Our strategy is to show that one color class consists of even elements of [1;m], while the other color
class consists of the odd elements of [1;m]. Since a3 is even, it will then follow that m3;m3+a3; : : : ;m3+

(k�3 � 1)a3 is a monochromatic k�3-term semi a3 (mod m3)-sequence. In view of Proposition 1, this will
complete the proof.

Let T0 = fm2;2m2; : : : ;(m=m2)m2g and, for 1 � j � m2 � 1, let Tj = j +T0 (mod m). Let 0 � j �

m1 � 2, and assume x;y 2 S j [ S j+1, with x 6= y. In case x;y 2 S j or x;y 2 S j+1, then x � y(mod m1).
Then x 6� y(mod m2) for otherwise x � y(mod m). If x 2 S j and y 2 S j+1 then x and y have opposite
parity (since m1 is even), so that x 6� y(mod m2) (since m2 is even). Hence, in all cases, no two elements
of S j [S j+1 are congruent (mod m2). It then follows, since S j [S j+1 has 2(m=m1) = m2 elements, and
since all elements of any Th are congruent (mod m2), that

(S j [S j+1)\Th 6=? (9)
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for all 0 � j � m1 � 2 and all 0 � h � m2 � 1. It follows from (9) that, for each 1 � j � m1 � 2,
S j [ S j+1 contains a semi a2 (mod m2)-sequence with m2=gcd(a2;m2) terms. Since no such sequence
can be monochromatic, and since each S j is monochromatic, S j and S j+1 have opposite colors. Thus,
since m1 is even, one color class consists of the even elements of [1;m] and the other class consists of the
odd elements of [1;m], as claimed.

Specific examples of sets S which satisfy the hypotheses of Proposition 2 include the following:
S = fa(mod 2a) ;b(mod 2bc) ;2c(mod 2abc)gwhere a;b and c are odd, a> 1, b> 1 and gcd(a;bc) = 1.

Proposition 2 gives a very special class of sets S for which the converse of Theorem 4 fails. The next
theorem gives sufficient conditions on S for fS(~k) to be infinite for some~k, which are satisfied by a large
class of sets S. Note, in particular, that Theorem 5 implies that the converse of Theorem 4 does hold if
gcd(ai;mi) = 1 for all i.

Theorem 5. Let S = fai (mod mi) : 1� i� ng. Let ei = gcd(ai;mi) for 1� i� n, and di j = gcd
�

mi
ei
;

m j
e j

�

for i 6= j. Assume that for every pair i 6= j, di j divides neither ai nor a j. Then fS(~k�) = ∞ where
~k� = (m1=e1; : : : ;mn=en).

Proof. We first prove the result for the case in which e1 = 1 for all i. Let m = lcmfm1; : : : ;mng. By
Lemma 2, it suffices to find a 2-coloring of [1;m] that avoids mi-term monochromatic semi ai (mod mi)-
sequences for all i.

Define the coloring χ : [1;m]!f0;1g as follows:

χ(x) =

8><
>:

1 if x � 0(mod mi) for some i

0 if x � ai (mod mi) for some i

arbitrary otherwise

Note that χ is well-defined on [1;m] because if i 6= j and x � 0(mod mi), then (since di j does not divide
a j) x 6� a j (mod m j). Since e1 = 1 for all i, any mi-term semi ai (mod mi)-sequence must contain an
element from each congruence class modulo mi. Hence, no such sequence can be monochromatic under
χ . This proves the theorem in case all ei = 1.

Now let the ei be arbitrary. Consider

S0 = fai (mod mi=ei) : 1 � i � ng:

Since gcd
�

ai;
mi
ei

�
= 1 and since gcd

�
ai
mi
;

a j
m j

�
divides neither ai nor a j, we can apply the case proven

above (the case of all ei = 1). Thus, there is a coloring of the positive integers that avoids, for all i,
(mi=ei)-term monochromatic ai (mod mi=ei)-sequences. Observing that every ai (mod mi)-sequence is
also an ai (mod mi=ei)-sequence, the proof is complete.

4 A Special Case

Theorem 3 gives an upper bound, using 2 colors, for fa(m1);b(m2)(k), when d = gcd(m1;m2) divides a or
b. If we use the stronger hypothesis that d divides both a and b, we are able to give a much better upper
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bound. In fact, we shall prove a result which deals with the more general case in which there are r colors
and jSj= r. We first prove the following theorem.

Theorem 6. Let r � 2 and, for 1 � i � r, let mi > 1 and 1 � ai < mi. Let a0 = minfaig, d =

gcd(m1; : : : ;mr), and m = lcmfm1; : : : ;mrg. Assume that d divides ai for all i and that the mi=d are

pairwise relatively prime. Then, for each t � 2, every r-coloring χ of [1;m(t�2)+a0 +1] contains, for

1 � i � r, a monochromatic ki-term ai (mod mi)-sequence Xi, with

χ(Xi) 6= χ(X j) for i 6= j and

∑
i=1

rki = t with ki � 0:

Proof. We first prove the theorem for the case in which d = 1, using induction on t.
If t = 2 then since f1;a0 + 1g is a 2-term ai (mod mi)-sequence for some i, [1;a0 + 1] will either

contain a monochromatic 2-term ai (mod mi)-sequence or else will contain a 1-term monochromatic
ai (mod mi)-sequence and a 1-term monochromatic a j (mod m j)-sequence, with j 6= i, not of the same
color. Hence the result holds for t = 2.

Now assume that for a fixed t the result holds (still assuming d = 1). Let F(t) = m(t � 2)+ a0 + 1
and let χ be an r-coloring of [1;F(t +1)]. For i = r, let

Xi = fxi1 ; : : : ;xiki
g � [1;F(t)]

be the monochromatic ai (mod mi)-sequences given by the induction hypothesis. By the Chinese remain-
der theorem there is a z with F(t)< z � F(t)+m satisfying

z � (ai + xiki
)(mod mi)

for i = 1; : : : ;r. Then, for some i, Xi[fzg is a (ki +1)-term monochromatic ai (mod mi)-sequence such
that χ(Xi[fzg) 6= χ(X j) for all j 6= i. Hence in [1;F(t)+m] = [1;F(t +1)] there is, for each i = 1; : : : ;r
a monochromatic ai (mod mi)-sequence, with no two sequences of the same color, such that the sum of
the length of the sequences is t +1. This completes the proof for the case in which d = 1.

We now assume d 6= 1. Let α be any r-coloring of [1;F(t)]. Let

N = 1+
a0

d
+

m1 � � �mr

dr (t�2) =
F(t)�1

d
+1:

Define α 0 on [1;N] by α 0(i) = α(d(i� 1)+ 1). Since gcd(mi=d;m j=d) = 1 for i 6= j we know that by
the previous case, under α 0, [1;N] contains, for each i = 1; : : : ;r, a monochromatic ki-term ai

d

�
mod mi

d

�
-

sequence Xi = fxi1 ; : : : ;xiki
g such that

r

∑
i=1

ki = t and α
0(Xi1) = α

0(Xi2) for i1 6= i2:

Then under α , for each i,
Yi = fd(xis �1)+1 : s = 1; : : : ;kig
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is a monochromatic ai (mod mi)-sequence contained in [1;F(t)] with α(Yi) 6= α(Yj) for i 6= j.

Corollary 2. Let S= fai (mod mi) : 1� i� rg and assume r, d, m, all ai, and all mi satisfy the hypotheses

of Theorem 6. Then for all k � 2

f (r)S (k)� m[r(k�1)�1]+a0 +1:

Proof. By Theorem 6, each r-coloring of [1;m(r(k�1)�1)+a0 +1] contains, for each i, a monochro-
matic ki-term ai (mod mi)-sequence, each of a different color, such that ∑

r
i=1 ki = r(k� 1)+ 1. Then at

least one of these sequences has length at least k.

We state separately the upper bound for fa(m1);b(m2)(k) provided by Corollary 2.

Corollary 3. Let 1� a�m1, 1� b�m2, and a0 = minfa;bg. Let d = gcd(m1;m2), m = lcmfm1;m2g,

and assume d divides both a and b. Then for all k � 2,

fa(m1);b(m2)(k)� (2k�3)m+a0 +1:

5 Remarks

The upper bounds given by Theorem 1 and Corollary 1 are very sharp. In fact, lower bounds for
fq(m);m(k;n) were given in [5] which are of the same order of magnitude as the upper bounds of The-
orem 1. For the case in which m=e is odd, the bounds of Theorem 1 are best possible; for example,
f5(7);7(3;5) = 50 and f8(13);13(3;4) = 76 (these agree precisely with the bounds provide by Theorem 1).
For m=e even, we have found instances in which the upper bound of Theorem 1 differs from the actual
value of f by only 1; for example, f9(10);10(3;3) = 49.

Since Theorem 1 is just a special case of Corollary 1 (the case in which T = fmg), the above examples
also show that the bounds of Corollary 1 are sharp. We have found many additional examples, however,
in which the bounds of Corollary 1 are sharp (and sometimes precise). For example, it is easy to see, from
the proof of Corollary 1, that f5(7);14(3;3)� f5(7);7(3;5) = 50, and this is the exact value of f5(7);14(3;3).
Perhaps more surprisingly, when T = f9;14g, the value of f5(7);T (3;3) is still 50, again coinciding with
the upper bound of Corollary 1.

There are many cases in which the bound given by Theorem 3, and hence Theorem 4, is more than
twice the actual value of f . However, we have also found many examples where the bound is very sharp.
In particular, computer data suggests the following conjecture is true:

Conjecture 1. Let c � 2, let m1 be even and let b = (c�1)m1. Then fa(m1);b(m2)(3) = 4(c�1)m1 +1.

We see that, under the same hypotheses of Conjecture 1, the upper bound for f given by Theorem 3
is 4cm1.

The bound given by Corollary 3 has order of magnitude 2mk, where m = lcmfm1;m2g. We have
computed many values of f , where the hypotheses of Corollary 3 are satisfied, and have not found
any where f grows quite that fast, but have found many examples in which it grows faster than mk.
One interesting set of examples is where a = 1, m1 = 2, b is odd, and m2 is odd. In all such cases,
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fa(m1);b(m2)(3) = m+a+2b and, whenever k � 4 and b < m2=2, we found that fa(m1);b(m2)(k) = m+a+

2b+(k� 3)(m+ b). In addition, when b = (m2 + 1)=2 (so m2 � 1(mod 4)), fa(m1);b(m2)(k) = m+ a+

2b+(k� 3)(m+ b� 1). Hence, in the case of b = (m2 � 1)=2, f (k) has value m+ a+ m
2 � 1+(k�

3)
�
m+ 1

2

�m
2 �1

��
. This would suggest a growth rate of f of 5

4 mk.
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