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1 Introduction

Using the convergents of the simple continued fraction for a positive irrational number

o = lag,ai,...] = ap + a1+(1,21+... , it is possible to obtain an explicit formula for Y, [ket]. This has
been done several times. (See [4,06,7,9—12]. These papers all deal with the asymptotic behaviour of the
function Co (m) = X ({ka} — %), where {x} denotes the fractional part of x. Since ka = [ka] + {kat},
Co(m) =Y, (ka - [ka] -5 = m(m+1 Y, lka]— m(m+ ) any formula for Yoo, [ko] gives a for-

mula for Cy (m) and conversely.)
The simplest formula for '} , [ka] is the following one, taken from [4].
When a < 1, with pr/q, = [0,a1,a2,...,a,] (Pn,qn relatively prime), one has
an

I;l[ka] = %(ann —qn+pa+(=1)").

Applying this to 1+\f =1+]0,1,1,...] gives (after a little arithmetic) the identity
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where Fp =0, F =1, Fy4p =F41 +F,,n>0.

For general m, one first writes m = z;q;—1 + -+ + 22q1 + 2190, where 0 < z; <a; —1; 0 <z < q,,
2<i<t;ifzi=a;, thenz;_| = 0,2 <i<t. (This is the so-called “Zeckendorff representation of m.” To
find it, subtract the largest possible g; from m and repeat.) Then

m
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However, in the expression Y}, [ka] + Z[ma][ «J» the complications arising in the two sums miracu-
lously cancel each other out. M. Lerch [8] gave as a problem the identity }'}" , [ka]+ Zk:l [k1]=m[ma].
This identity is mentioned in [6] and [7].



The authors are not aware of any published proof of this formula, although it is certainly possible to

give a (rather complicated) proof using a formula for Y/, [ket]. We give below a simple direct proof.

2 The Proof of Lerch’s Formula

Let x be an irrational number, x > 1. Then the set {[nx] : n > 1} is called a Beatty sequence, and is denoted
by xN. Our proof of Lerch’s formula is based on the following interesting lemma, first popularized by
Beatty [1]. (See [2], and the 12 references given in [5].) The papers [3] and [5] generalize this result to
sequences of the form {[nx+2] :n > 1}.

Lemma 1. Letx > 1 andy > 1 be two irrational numbers such that % + % = 1. Then the Beatty sequences
xN and yN form a partition of N = {1,2,...}.

Proof. For any ¢ € N, define A, = xNN(0,¢), B, = yNN (0,1).
Since x > 1, y > 1 are irrational, we obtain { —1 < |A/] < {and { —1 <|B;| < . Hencer -2 <
|A/|+|B¢| < t,so |A;|+|B;| =t —1, for each t > 1. Now by induction on ¢, it easily follows that the sets

A; and B, form a partition of {1,2,...,r—1}. O
As an immediate consequence we have:

Lemma 2. Let a > 0 and b > 0 be two irrational numbers such that % + % = 1. Let n be a positive

integer. Then

Y [kal+ ) [kb]= %n(n+l)

[ka)<n [kb]<n

Now we are almost ready to prove Lerch’s formula. We will need the following facts about the floor

function |- |:
Lemma3. Leta >0, x=14+0,y=1+ é, and let m,k be positive integers. Then
@ [|ma)y] <m< |[(ma+1)L]

(b) [ky| < [mx] iffk < [ma]

Proof. Part (a) follows directly from the definition of the floor function. Obviously, |ky| < [mx] is
equivalent to k+ |k | <m+ [ma].

Now, if k < [ma] then, by part (a), |k%| < m. Adding these two inequalities gives k+ |k | <
m+ |ma].

On the other hand, if k > |ma|, then k > [ma| + 1, so by part (a), LkéJ > m. Adding the first and
last of these inequalities gives k+ |kL | > m+ |mat]. O

Theorem 1. (Lerch’s formula) Let a be a positive irrational real number. Then for every positive integer

m,
mot]
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Proof. Letx=1+a,y=1+ é. By Lemma 2 (with n = |mx]), we have
1
Y lk+ Y k)= 5 Lmx] (Imx] +1)
[kx] < [mx] Lky] <|mx]

1
= 5 (m+[ma])(m+[ma] +1)
1 1
= Em(mﬁ- 1+ 3 lmoe] (|ma] + 1) +m|me].
On the other hand, by Lemma 3,
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Lerch’s formula follows. O

3 An Application

Let o = HT‘E andlet Fp=0,F1 =1, F+1 =F 41+ F,,n>0. Whenn > 1 and i = 1,2,3, we have the

well-known identities :

S(=1+1)

{EH;J:a—;«4ﬁ“+0

These, together with Lerch’s formula, give
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Adding the first two equations, and equating the resulting right hand side with the right hand side of the
third equation, gives the following pleasing identity, valid for n > 1:
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