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Abstract

Let d(k;q) be the smallest positive integer d such that if the d-dimensional vector space over the

q-element field is k-colored, there exists a monochromatic affine line. It is shown that d(2;4) = 3 and

d(3;3) = 4.

1 Introduction

Let Fq denote the q-element field and let Fq(d) denote the d-dimensional vector space over Fq. We will
take Fq(d) = f(x1; : : : ;xd) : xi 2 Fq;1 � i � dg. For any k � 1 and prime power q, let d(k;q) denote the
smallest integer d such that if Fq(d) is k-colored, there exists a monochromatic affine line.

(In other words, if
Fq(d) = A1[A2[�� �[Ak;

then some Ai contains an affine line. An affine line is any translate (coset) of a 1-dimensional vector
subspace.)

The existence of the numbers d(k;q) is guaranteed by the Hales-Jewett theorem [2]. However, no
“reasonable" (for example, primitive recursive) upper bound is known for these numbers.

Similarly, no “reasonable" upper bound is known for the van der Waerden numbers w(k; t), where,
for any k � 1, t � q, w(k; t) is the smallest positive integer w such that if f1;2; : : : ;wg is k-colored, there
exists a monochromatic t-term arithmetic progression [3].

In this note we show that d(2;4) = 3 and d(3;3) = 4.
(The only known non-trivial values for the van der Waerden numbers are w(2;3) = 9, w(3;3) = 27,

w(2;4) = 35, w(3;4) = 76, w(2;5) = 178 [1].)
In the case of d(3;3) = 4, (or of d(2;3) = 2) we are dealing with affine lines over the field F3, and

these are precisely the sets of the form

fx;x+ y;x+2yg; y 6= 0:

That is, the affine lines are 3-term arithmetic progressions in F3(4) (or F3(2)).
The only known way to show that w(3;3) = 27 is to verify (by computer) that each of the 327 3-

colorings of f1;2; : : : ;27g has a monochromatic 3-term arithmetic progression. It is interesting that the
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algebraic and geometric structure carried by F3(4) allows one to show in a few pages that each of the
381 3-colorings of F3(4) has a monochromatic 3-term arithmetic progression. Perhaps this method can
be extended to give upper bounds for d(k;3), k > 3.

2 Exact values for d(k;q)

Throughout, by “line" we mean “affine line."

Fact 1. d(k;2) = blog2 kc+1, k � 1.

Proof. Any 2-element subset of F2(d) is a line, hence if 2d > k and F2(d) is k-colored, there will be a
monochromatic line, and therefore d(k;2)� blog2kc+1. It is clear that d(k;2)> blog2 kc.

Fact 2. d(2;3) = 2.

Proof. Clearly d(2;3)> 1. Examination of a few cases shows that d(2;3)� 2.

Fact 3. d(2,4) = 3.

Proof. It is not difficult to find a 2-coloring of F4(2) for which there does not exist any monochro-
matic line. (Note that F4(2) has 20 lines, 4 translates of each of the 5 1-dimensional vector sub-
spaces.) For example, with F4 = f0;1;s;1+ sg (where s2 = 1+ s), color the points (0;0);(0;s);(0;1+
s);(1;1);(s;1);(1+ s;0);(1+ s;s);(1+ s;1+ s) with one color, and the remaining points of F4(2) with
the other color. This shows that d(2;4)> 2.

To show that d(2;4) � 3, we suppose that a 2-coloring of F4(3) is given, say, using the colors Red
and Blue, and we assume that there does not exist any monochromatic line.

Let A be the set of Red points. Then A meets every line, and contains no line. Let jAj = t, and for
each x in A, let Ax denote the set of lines in F4(3) which contain x.

Let ai be the number of lines in F4(3) which contain exactly i points of A, for i = 1;2;3. Note that in
F4(3) there are (43�1)=(4�1) = 21 lines containing a given point, and 21 �43=4 = 336 lines altogether.

Now let S denote the sum ∑ jAxj (x 2 A) and let T denote the sum ∑ jAx\Ayj (x;y 2 A;x 6= y). Then
a line which contains exactly one point of A contributes 1 to S and 0 to T . Similarly, a line containing
exactly two points of A contributes 2 to S and 1 to T , and line containing three points of A contributes 3
to S and 3 to T . Noting that jAxj= 21 and jAx\Ayj= 1 for all x;y 2 A, x 6= y, we obtain

a1 +a2 +a3 = 336;

a1 +2a2 +3a3 = ∑ jAxj= 21t;

a2 +3a3 = ∑ jAx\Ayj=
1
2

t(t�1):

Solving gives

a1 =
1
2
[t2�85t +2016];

a2 =�[t2�64t +1008];

a3 =
1
2
[t2�43t +672]:
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The number a2 is non-negative only when 28 � t � 36, and for each of these values of t, either
a1 � 160 or a3 � 160.

Therefore we may assume without loss of generality that there are 160 lines containing three Red
points and one Blue point each. (In short, we have 160 RRRB lines.)

From this point on it will be convenient to perform various invertible affine transformations (an
invertible linear transformation followed by a translation) on the vector space F4(3). Each time we do
this, we actually shift to a new coloring, but if we find a monochromatic line relative to the new coloring,
there must be a monochromatic line relative to the old coloring. Indeed, if c : F4(3) 7! fR;Bg is any
coloring and f is any invertible affine transformation, then the new coloring c0 is defined by

c0(x) = c( f�1(x)); x 2 F4(3);

and there is a c-monochromatic line L if and only if there is a c0-monochromatic line f (L).
Returning to the argument, note that the set of all lines in F4(3) is the disjoint union of 21 sets of 16

lines each, where each set is a “parallel class of lines," that is, within each set the 16 lines are all parallel.
(Two lines are parallel if each is a translate of the other.) Since 7 � 21 < 160, some parallel class must
contain at least 8 RRRB lines.

Thus there is a line L and points a01; : : : ;a
0

8 such that

a01 +L; : : : ;a08 +L

are all RRRB lines.
By means of affine transformations we can assume that

L = F4v; v = (1;0;0);

so that if a0 = (x;y;z) then a0+L = f(x+ a;y;z) : a 2 F4g. In particular, each line a0i +L intersects the
plane

P = f(0;y;z) : y;z 2 F4g

in a point ai. Since a0i+L= ai+L, we have that a1+L; : : : ;a8+L are all RRRB lines and that a1; : : : ;a8 2

P.
Now in P, some three of a1; : : : ;a8 are collinear, say, on the line L1. (For in P there are exactly 5 lines

through a1. At least 2 of the remaining 7 points a2; : : : ;a8 must lie on one of these lines.)
Assume that fa1;a2;a3;bg= L1. Since L1 � P, L1 and L are not parallel, so the lines a1 +L, a2 +L,

a3 +L, b+L are parallel and their union is a plane P1. Since the first 3 of these lines are RRRB lines,
their union contains only 3 Blue points.

We can assume that the line b+L contains a Red point u0. (Otherwise, the line b+L is monochro-
matic in the color Blue.) Through u0 in the plane P1 there are 5 lines: the line b+L, and four more lines.
Each of the three Blue points in (a1 +L)[ (a2 +L)[ (a3 +L) belongs to exactly one of these four lines.
Hence there is a line through u0 in P1 which is monochromatic in the color Red.

This contradiction finishes the proof that d(2;4)� 3, and hence d(2;4) = 3.
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Fact 4. d(3;3) = 4.

Proof. To see that d(3;3)> 3, consider the following coloring of F3(3), using the colors 1;2;3.

1 1 2
1 1 2
2 2 3

2 2 3
2 2 3
3 3 1

3 3 1
3 3 1
1 1 2

It is easy to check that there is no monochromatic line.
To see that d(3;3)� 4, we argue along the lines of the proof of Fact 3, except that now the equations

are obtained from incidence relations involving points and planes (by “plane" we mean “affine plane,"
that is, a translate of a 2-dimensional vector subspace) rather than points and lines. Let a 3-coloring
of F3(4) be given, say, using the colors Red, Blue, and Green, and assume that there does not exist any
monochromatic line. As before, we shall show that under this assumption there must be a monochromatic
line.

Let A be the set of Red points, and let jAj = t. According to Fact 2, every plane P in F3(4) has
jP\Aj � 1. Also, it is not difficult to see that if jP\Aj � 5, then P contains a monochromatic line in the
color Red. Hence every plane in F3(4) meets A in either 1;2;3 or 4 points.

Let ai be the number of planes in F3(4) which meet A in exactly i points, and for each x in A let Ax

denote the set of planes in F3(4) which contain x.
In F3(4) there are (34�1)(34�3)=(32�1)(32�3) = 130 2-dimensional vector subspaces and hence

130 (affine) planes through each point. The total number of planes is 130 � 34=32 = 1170. We also use
the fact that since A contains no line, there is exactly one plane through any three points of A; also there
are (34�3)=(32�3) = 13 planes through each pair of points.

Putting all this information together (and counting the contribution of each type of plane to the
various sums) we obtain the following equations.

a1 +a2 +a3 +a4 = 1170;

a1 +2a2 +3a3 +4a4 = ∑ jAxj= 130t;

a2 +3a3 +6a4 = ∑ jAx\Ayj= 13
�

t
2

�
;

a3 +4a4 = ∑ jAx\Ay\Azj=

�
t
3

�
:

Solving gives

a1 = 4 �1170�3 �130t +2 �13
�

t
2

�
�

�
t
3

�
;

a2 =�6 �1170+6 �130t�5 �13
�

t
2

�
+3

�
t
3

�
;

a3 = 4 �1170�4 �130t +4 �13
�

t
2

�
�3

�
t
3

�
;

a4 =�1170+130t�13
�

t
2

�
+

�
t
3

�
:
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When t = 27, a3 = 117. For all larger values of t, a3 is negative. Since at least one of the colors must
occur at least 27 times (and the same set of equations hold when A is replaced by the set of Blue points
or the set of Green points), it follows that t = 27 and

a1 = 351; a2 = 0; a3 = 117; a4 = 704:

The same conclusions hold for the Blue points and the Green points. Therefore there are exactly 351
(4;4;1)-planes, 351 (4;1;4)-planes, 351 (1;4;4)-planes, and 117 (3;3;3)-planes, where an (r;b;g)-plane
is one which has r Red points, b Blue points, and g Green points.

Consider the (4;4;1)-planes and (4;1;4)-planes. There are 702 of these planes, and 130 parallel
classes of planes in F3(4), hence some 6 of these planes lie in the same parallel class. We may assume
by an affine transformation that these 6 planes are all parallel to the plane

P1 = f(0;0;x;y) : x;y 2 F3g:

Each of the 6 planes intersects the plane

P0 = f(x;y;0;0) : x;y 2 F3g

in one point. Let the 6 planes be a1 +P1; : : : ;a6 +P1, where a1; : : : ;a6 are in P0.
Some three of the six points a1; : : : ;a6 are collinear in P0, say a1;a2;a3. Of the three planes a1 +

P1;a2 +P1;a3 +P1, at least two are of the same type (both (4;4;1)-planes or both (4;1;4)-planes). As-
sume without loss of generality that two of them are (4;4;1)-planes. Then the union

(a1 +P1)[ (a2 +P1)[ (a3 +P1)

is a 3-space, in which the color Green appears at most 6 times.
In this 3-space, there are (33 � 1)(33 � 3)=(32 � 1)(32 � 3) = 13 planes through each point, (33 �

3)=(32�3) = 4 planes through each pair of points, one plane through each triple of Green points (since
we are assuming no monochromatic line) and 13 �33=32 = 39 planes altogether.

Let G be the set of 6 Green points in this 3-space, and for x in G let Gx be the set of planes containing
x. Then

���[Gx

����∑ jGxj�∑ jGx\Gyj+∑ jGx\Gy\Gzj

= 6 �13�15 �4+20

= 38 < 39:

Therefore there is a plane with no Green point, and hence a monochromatic Red or Blue line. This
shows that d(3;3)� 4, and hence d(3;3) = 4.
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3 Concluding remarks

One would like to have upper and lower bounds for d(k;3), k� 1. Perhaps the correct order of magnitude
for an upper bound for d(k;3) is 2k�1, as is suggested by d(1;3) = 1, d(2;3) = 2, d(3;3) = 4. Perhaps
the coloring of F3(3) which was used to show d(3;3)> 3 has a generalization to F3(d), for d > 3.

The best-known bounds for the van der Waerden numbers w(k;3) are

kc logk < w(k;3)< 22dk
; k � 1;

where c;d are constants [1].
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