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Abstract

The semigroup S of the title is the free semigroup F on four generators factored by the congruence

generated by the set of relations fw2
= w3 : w 2 Fg. The following lemma is proved by examining the

elements of a given congruence class of F :

LEMMA. If x;y 2 S and x2
= y2, then either xy= x2 or yx= x2.

From the Lemma it then easily follows that the (disjoint) subsemigroups fy 2 S : y2
= x2g of S are

locally finite.

This note answers in the negative a question raised by Shevrin in [2].

Theorem. There exists a semigroup S with disjoint locally finite subsemigroups Se such that S =
S

Se

and S is not locally finite.

Let F be the free semigroup with identity on four generators. Let � denote the smallest congruence
on F containing the set f(x2;x3) : x 2 Fg. That is, for w;w0 2 F , w � w0 if and only if a finite sequence
of “transitions", of either of the types ab2c ! ab3c or ab3c ! ab2c, transforms w into w0.

The equivalence classes of F with respect to � are taken as the elements of S, and multiplication in
S is defined in the natural way.

There is given in [1] a sequence on four symbols in which no block of length k is immediately
repeated, for any k. Thus the left initial segments of this sequence give elements of F containing no
squares. Since no transition of the form ab2c ! ab3c or ab3c ! ab2c can be applied to an element of F

contining no squares, the equivalence classes containing these elements consist of precisely one element
each; thus the semigroup S is infinite, and hence not locally finite.

In what follows, the symbols α;α1;α2; : : : refer to transformations (on elements of F) of the form

ab ! ayb; where a � ay, and a;b;y 2 F:

The symbols β ;β1;β2; : : : refer to transformations of the type

axb ! ab; where a � ax, and a;b;x 2 F:

Note that ab2c ! ab3c is an α , and ab3c ! ab2c is a β .
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Lemma 1. If w;w0 2 F, and wβα = w0, then there are α1;β1 such that wα1β1 = w0:

Proof. Let
w = axb; wβ = ab; where a � ax.

Let
wβ = AB; wβα = AyB; where A � Ay.

There are two cases:
(i) A is contained in a. That is,

a = Aa0 and w0 = wbα = aβα = Aa0bα = Aya0b:

Here let
wα1 = axbα1 = Aa0xbα1 = Aya0xb:

Now since
Aya0 � Aa0 = a � ax = Aa0x � Aya0x;

we may let
wα1β1 = Aya0xbβ1 = Aya0b = w0

:

(ii) A is not contained in a. That is,

b = b1b2; A = ab1; A � Ay;

and
w0 = wβα = abα = ab1b2α = Ab2α = Ayb2 = ab1yb2:

Since
axb1 � ab1 = A � Ay = ab1y � axb1y;

we may let
wα1 = axbα1 = axb1b2α1 = axb1yb2;

and
wα1β1 = axb1yb2β1 = ab1yb2 = w0

:

Lemma 2. If w;w0 2F, wγ1γ2 � � �γm =w0, where each γi is either an α or a β , then there are α1; : : : ;αn;β1; : : : ;βk

such that wα1 � � �αnβ1 � � �βk = w0.

Proof. This follows immediately from Lemma 1 by induction.

Lemma 3. The word abα contains a left initial segment which is equivalent to a.

Proof. Let ab = AB, abα = AyB, where A � Ay. Again there are two cases:
(i) A is contained in a. That is, a = Aa0, abα = Aa0bα = Aya0b. Since A � Ay, the left initial segment

Aya0 of abα is equivalent to a.
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(ii) A is not contained in a. That is, b = b1b2, A = ab1, abα = ab1b2α = ab1yb2. Here, a itself is a
left initial segment of abα , and is certainly equivalent to a.

Lemma 4. If x;y 2 F and x2 � y2, then either y � xa for some a 2 F, or x � yb for some b 2 F.

Proof. By Lemma 2, thee are αi and β j such that xxα1 � � �αmβ1 � � �βn = yy. Let w = xxα1 � � �αm =

yyβ�1
n � � �β�1

1 . By Lemma 3, w contains a left initial segment A equivalent to x. Similarly, since each
β
�1
i is an α , w also contains a left initial segment B equivalent to y. Depending on which segment

contains the other, either B = Aa for some a, or A = Bb for some b. In the first case, y � B = Aa � xa; in
the second, x � A = Bb � yb.

Lemma 5. In this lemma, “=" will denote equality in S. Let e be an idempotent element of S: e = e2.

Let Se = fx 2 S : x2 = eg. Then Se is a locally finite subsemigroup of S.

Proof. First, we note that z 2 Se implies ez = ze = e. For ez = z2z = z2 = e, and similarly ze = e. Now
let x;y 2 Se, that is, x2 = y2 = e. By Lemma 4, either y = xa or x = yb. In the first case, we obtain

xy = x2a = x3a = x2y = ey = e:

In the second case, we obtain similarly that yx = e. Thus x;y 2 Se implies xy = e or yx = e. In either
case, (xy)2 = e, that is, xy 2 Se. Thus Se is a semigroup.

Now let x1; : : : ;xn 2 Se, and let hx1; : : : ;xni denote the subsemigroup of Se generated by x1; : : : ;xn. If
n = 1, then hx1i is clearly finite; so suppose n > 1. Then every element of hx1; : : : ;xni may be expressed
as a product of not more than n of the xi’s. For any product z of more than n xi’s must contain some
xi twice: z = axibxic, where a;b;c 2 Se. Since either xib = e or bxi = e, it follows that xibxi = e and
z = aec = ec = e = x1x1. This shows that hx1; : : : ;xni is finite, and hence that Se is locally finite.

The theorem follows immediately from Lemma 5, since clearly e 6= e0 implies that Se and Se0 are
disjoint, and

S = [Se:
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