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A number of people have considered the arithmetical, combinatorial, geometrical, and other proper-
ties of sequences of the form ([nα] : n � 1), where α is a positive irrational number and [] denotes the
greatest integer function. (See, e.g., [1–16] and the references contained in those papers, especially [8]
and [16].)

There are several other sequences which may be naturally associated with the sequence ([nα] : n� 1).
They are the difference sequence

fα(n) = [(n+1)α]� [nα]� [α]

(the difference sequence is “normalized" by subtracting [α] so that its values are 0 and 1), the character-

istic function

gα(n) (gα(n) = 1 if n = [kα] for some k, and gα(n) = 0 otherwise);

and the hit sequence

hα(n);

where hα(n) is the number of different values of k such that [kα] = n.
We use the notation

fα = ( fα(n) : n� 1); gα = (gα(n) : n� 1); hα = (hα(n) : n� 1):

Note that fα = fα+k for any integer k � 1. In particular, fα = fα�1 if α > 1.
Special properties of these sequences in the case where α equals τ , the golden mean, τ = (1+

p
5)=2,

are considered in [5,12,14,16]. For example, the following is observed in [12]. Let un = [nτ];n� 1, and
let Fk denote the kth Fibonacci number. Given k, let r = F2k;s = F2k+1; t = F2k+2. Then

ur = s; u2r = 2s; u3r = 3s; : : : ;ut�2r = (t�2)s;

thus, the sequence ([nτ]) contains the (t�2)-term arithmetic progression (s;2s;3s; : : : ;(t�2)s).
It was shown in [16], using a theorem of A. A. Markov [11] (which describes the sequence fα (for

any α) explicitly in terms of the simple continued fraction expansion of α), that the difference sequence
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fτ has a certain “substitution property." We give a simple proof of this below (Theorem 2) without using
Markov’s theorem. We also make several observations concerning the three sequences fτ ;gτ , and hτ .

Theorem 1. The golden mean τ is the smallest positive irrational real number α such that fα = gα = hα .

In fact, fα = gα = hα exactly when α2 = kα +1, where k = [α]� 1.

Proof. It follows directly from the definitions (we omit the details) that if α is irrational and α > 1, then
hα = gα = f1=α . (The fact that gα = f1=α is mentioned in [8]. It is straightforward to show that

gα(n) = 1) f1=α(n) = 1 and gα(n) = 0) f1=α(n) = 0:)

Also, if α is irrational and α > 0, then

hα(n) = f1=α(n)+ [1=α] for all n� 1:

Thus, if α is irrational and fα = gα = fα , then α > 1 (otherwise, gα is identically equal to 1, and fα is
not) and

fα�[α](n) = fα(n) = gα(n) = f1=α(n) for all n� 1:

Since the sequence fβ determines β if β < 1, this gives α� [α] = 1=α , and the result follows.

Definition 1. For any finite or infinite sequence w consisting of 0’s and 1’s, let w̄ be the sequence
obtained from w by replacing each 0 in w by 1, and each 1 in w by 10. For example, 10110 = 10110101.
(Compare “Fibonacci strings" [10, p. 85].)

Note that uv = ū � v̄, and that ū = v̄) u = v by induction on the length of v.

Theorem 2. The sequences fτ and fτ are identical.

Proof. First, we show that if 0 < α < 1, then fα = g1+α . Let L(w) denote the length of the finite
sequence w, so that if w = fα(1) fα(2) � � � fα(k), then

L(w̄) = k+ fα(1)+ � � �+ fα(k) = k+[(k+1)α]:

Thus,

[ fα(n) = 1], [n = L(w̄)+1 for some initial segment w of fα ]

, [n = [(k+1)(1+α)] for some k � 0], [g1+α(n) = 1]:

Therefore, fτ = fτ�1 = gτ = f1=τ = fτ�1 = fτ .

Corollary 1. The sequence fτ can be generated by starting with w = 1 and repeatedly replacing w by

w̄.

Proof. If we define E1 = 1 and Ek+1 = Ek, then, since 1̄ = 10 begins with a 1, it follows that, for each k,
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Ek is an initial segment of Ek+1. By Theorem 2 and induction, each Ek is an initial segment of fτ . Thus,

E1 = 1; E2 = E1 = 10; E3 = E2 = 101; E4 = E3 = 10110;

E5 = E4 = 10110101; etc.;

are all initial segments of fτ . (These blocks naturally have lengths 1;2;3;5;8; : : : .)

Corollary 2. For each i� 1, let xi denote the number of 1’s in the sequence fτ which lie between the ith

and (i+1)st 0’s. Thus,

fτ = 101101011011010110101101101011011 � � � ;
(xn) = 2 1 2 2 1 2 1 2 2 1 2 2 � � � :

Then the sequences (xn�1) and fτ are identical.

Proof. If we start with the sequence (xn) and replace each 1 by 10 and each 2 by 101, we obtain the
sequence fτ . Since ¯̄0 = 10 and ¯̄1 = 101, this shows that (xn�1) = fτ = fτ . Therefore, (xn�1) = fτ ,
and, finally, (xn�1) = fτ .
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