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Abstract

This note is a short survey, by no means intended to be complete, of some of the descriptions which

have been given of standard Sturmian words, and of some of the applications of these descriptions to

elementary number theory.. (‘Elementary number theory’ is interpreted fairly broadly.) The descrip-

tions and applications below have appeared before, expect for Fact 4, Application 1, and the proof of

Application 2.
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1 Introduction

In 1876, Smith [28] proved the following remarkable fact.
Let α be an irrational real number with 0 < α < 1. Define the infinite binary word fα by fα =

fα(1) fα(2) � � � fα(n) � � � where fα(n)= [(n+1)α]� [nα], n� 1, [�] denoting the greatest integer function.
Assume that α has the simple continued fraction expansion α = [0;a1;a2; : : : ;an; : : :], and inductively
define finite words g0 = 0, g1 = 0a1�11, gn = gan

n�1gn�2, n � 2, and then set gα = limn!∞ gn. Smith
proved that fα = gα .

The definition of gα just given is equivalent to the usual modern definition standard Sturmian word

with slope α . See, for example, [10–15], or the chapter on Sturmian words in [4].

2 Descriptions of standard Sturmian words

The following notation is fixed throughout the statements of the four facts below. Let α be an irrational
real number with 0< α < 1, and with simple continued fraction expansion α = [0;a1;a2; : : : ;an; : : :]. Let
fα be the infinite binary word fα = fα(1) fα(2) � � � fα(n) � � � , where fα(n) = [(n+1)α]� [nα], n � 1.
Furthermore, for n � 1 let pn=qn = [0;a1;a2; : : : ;an], the nth convergent of α , where pn and qn are
relatively prime positive integers, and when n � 1 let Xn denote the initial segment (prefix) of fα of
length qn, that is, Xn = fα(1) fα(2) � � � fα(qn), n � 1. (Although for convenience we shall often define
X0 = 0, it is not necessarily true that X0 is a prefix of fα .)

We can now restate Smith’s result in the following way, as Fact 1.
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Fact 1. (Fraenkel et al. [18], Rosenblatt [24], Shallit [27], Smith [28], Stolarsky [30]): For each n �
2, Xn = Xan

n�1Xn�2, where X0 = 0 and X1 = 0a1�11. (Here Xan
n�1 denotes Xn�1Xn�1 � � �Xn�1, with an

repetitions. If a1 = 1, then X1 = 1.) We emphasize that Xn is a prefix of fα when n � 1, but X0 = 0 need

not be a prefix of fα .

As an illustration of this, if we take α = [0;2;1;1; : : :], then fα = 0100101001001 � � � , the famous
Fibonacci word. Here we have fα = limn!∞ Xn, where X0 = 0, X1 = 01, Xn = Xn�1Xn�2, and Xn has
length jXnj= qn, where q0 = 1, q1 = 2, qn = qn�1 +qn�2, n � 2.

Fact 2. (Bernoulli [3], Cristoffel [12], Markoff [22], Venkov [31]): For each t � 1, define the morphism

kt by kt(0) = 0t�11, kt(1) = 0t1. For each m � 1, define cm = ka1 � ka2 � � � � � kam(0), where � denotes

composition. Then fα = c1c2c3 � � �cm � � � . In fact, for each n � 1, fα = (c1c2c3 � � �cn)(ka1 � ka2 � � � � �
kan( fαn), where αn is defined by α = [0;a1;a2; : : : ;an +αn].

Fact 3. (Brown [7]): For each t � 1, define the morphism ht by ht(0) = 0t�11, ht(1) = 0t�110. Then for

each n � 1, fα = ha1 �ha2 � � � � �han( fαn), where αn is define by αn = [0;a1;a2; : : : ;an +αn].

The following fact is apparently new, although it follows easily from Fact 2.

Fact 4. Define Z0 = 0, Z1 = 0a1�11, Zn = Zan�1
n�1 Zn�2Zn�1, n � 2. Then fα = Z1Z2Z3 � � �Zn � � � .

To prove Fact 4, define cm as in Fact 2. Then by induction on m, cm = Zm, m� 1. The induction step
is:

cm = ka1 � ka2 � � � � � kam�1(kam(0)) = ka1 � ka2 � � � � � kam�1(0
am�11)

= cam�1
m�1 (ka1 � ka2 � � � � � kam�1)(1) = cam�1

m�1 (ka1 � ka2 � � � � � kam�2)(0
am�11)

= cam�1
m�1 (ka1 � ka2 � � � � � kam�2)(0)(ka1 � ka2 � � � � � kam�2)(0

am�1�11)

= cam�1
m�1 (ka1 � ka2 � � � � � kam�2)(0)(ka1 � ka2 � � � � � kam�1)(0)

= cam�1
m�1 cm�2cm�1 = Zam�1

m�1 Zm�2Zm�1 = Zm

Hence, fα = c1c2c3 � � �cm � � �= Z1Z2Z3 � � �Zn � � � .

3 Applications

Application 1. Let Fn be the nth Fibonacci number, defined as usual by F0 = 1, F1 = 1, Fn =Fn�1+Fn�2,

n � 2. We show that the Fibonacci word f = 0100101001001 � � � satisfies f = X̃1X̃2X̃3 � � � X̃n � � � , where

Xn is the initial segment of f of length Fn, and X̃n is the reversal of Xn. (Note that here the length of Xn is

different from the length of Xn in the illustration following Fact 1.)

To see this, take β = [0;1;1;1; � � � ]. Then, according to Fact 1 applied to fβ with X0 = 0, X1 = 1,
Xn = Xn�1Xn�2;n � 2, we know that for each n � 1, Xn is an initial segment of fβ . The length of Xn is
jXnj= Fn, where F0 = 1, F1 = 1, Fn = Fn�1 +Fn�2, n � 2. On the other hand, according to Fact 4, with
Z0 = 0, Z1 = 1, Zn = Zn�2Zn�1, n� 2, we know that fβ = Z1Z2Z3 � � �Zn � � � . By induction, it is easy to see
that Zn = X̃n, n � 0, where X̃n is the reversal of Xn. Thus, fβ = X̃1X̃2X̃3 � � � X̃n � � � , where Xn is the initial
segment of fβ of length Fn. Since (as is easily seen) fβ is the complement of the Fibonacci word (0’s
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and 1’s interchanged), it follows that the Fibonacci word f = 0100101001001 � � � has the same property:
f = X̃1X̃2X̃3 � � � X̃n � � � , where Xn is the initial segment of f of length Fn.

This can be compared with [14], where it is shown that f = 0100101001001 � � �= X̃3X̃5X̃7 � � � X̃2n+1 � � � .
(However, note that in [14] it is shown in addition that the division f = 0100101001001 � � �= X̃3X̃5X̃7 � � � X̃2n+1 � � �
has a certain minimal property with respect to the lexicographical order.)

Application 2. (Carstens et al. [11]). Let α be an irrational real number with α > 0, and with 1=α =

[a0;a1;a2; � � � ]. (Here we do not assume α < 1.) Define two infinite words Cα =Cα(1)Cα(2) � � �Cα(n) � � �
and Bα = b1b2 � � �bn � � � as follows. For each n � 1, Cα(n) = jαN\ (n;n+1)j; that is, Cα is the number

of positive integer multiples of α which lie between n and n+ 1. Each bk;k � 0, is a word on the two

symbols a0 and a0 + 1, defined inductively by b0 = a0, b1 = aa1�1
0 (a0 + 1), bk = bak�1

k�1 bk�2bk�1, k � 2.

Then Cα = Bα .

The proof in [11] is rather long and complicated. We now give a short proof based on Fact 4.

Proof. Assume first that α > 1, so that a0 = 0, and both Cα and Bα are binary words on 0;1. Now Cα is
the characteristic function of the set f[kα] : k � 1g, since Cα(n) = 1, jαN\ (n;n+1)j= 1, (9k;n <

kα < n+1), (9k;n = [kα]), n 2 f[kα] : k � 1g. On the other hand, it is easy to show (using α > 1)
that the characteristic function of f[kα] : k � 1g is in fact f1=α , where f1=α(n) = [(n+1)1=α]� [n1=α],
n � 1. Since 1=α = [0;a1;a2; : : :], and the bk’s are defined exactly as the Zk’s are defined in Fact 4
(applied to 1=α), Fact 4 now tells us that Cα = f1=α = Z1Z2 � � �= b1b2 � � �= Bα .

Next, assume that α < 1. Let 1
α
= [a0;a1;a2; : : :], so that α = 1=a0 +α1, where α1 = [0;a1;a2; : : :]<

1. It is easy to see that Cα(n) = a0 + fα1(n), n � 1 (where as usual fα1(n) = [(n+1)α1]� [nα1]). From
the definition of the word Bα , we see (using Fact 4 applied to α1) that if the symbol a0 is replaced by 0,
and a0 + 1 is replaced by 1, the word Bα is transformed into the word fα1 . Since Cα(n) = a0 + fα1(n),
n � 1, it follows that Cα = Bα .

Application 3. In [1, 5, 13] are three independent proofs of (a generalization of) the following result.

A very simple proof using Fact 1 is in [2]. (See also [6].) Let τ = (�1 +
p

5)=2, let F0 = F1 = 1,

Fn = Fn�1 +Fn�2, n � 2. Then

∞

∑
k=1

fτ(k)
2k =

∞

∑
k=1

�
1
2

�[k=τ]

=
∞

∑
k=1

[kτ]

2k

=
∞

∑
k=1

(�1)k�1

(2Fk �1)(2Fk�1 �1)

= [0;20;21;21;22;23; : : : ;2Fn ; : : :]:

Application 4. (Brown [8]). Assume 0 < α < 1, with α = [0;a1;a2; : : : ;an; : : :], and for n � 1, pn=qn =

[0;a1;a2; : : : ;an], where pn and qn are relatively prime positive integers. For m � 2, we find the Zeck-
endorf representation of m�1 (see, for example, [16]) by subtracting the largest possible qi from m�1,

and repeating, until finally we have m�1 = ∑
t
j=1 z jq j�1. Then [mα] = ∑

t
j=1 z j p j�1.

(The result in Application 4, in a somewhat more complex form, appears in [17]. The proof given
in [8] uses in a simple way a generalization of Fact 1.)
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Application 5. (Brown and Shiue [9]). By induction on n, using Fact 1, one can show that for n � 1,

∑
qn
k=1[kα] = 1

2 (pnqn � qn + pn +(�1)n). (The proof given in [9], however, does not use Fact 1.) More

generally, for any m � 1, if m = ∑
t
j=1 z jq j�1 is the Zeckendorf representation of m (see Application 4)

then
m

∑
k=1

[kα] =
1
2

t

∑
j=1

z j(z j p j�1q j�1�q j�1 + p j�1 +(�1) j�1)+ ∑
1�i< j�t

ziz j p j�1q j�1:

This leads to a formula for the function Cα(m) = ∑
m
k=1(fkαg� 1

2 ) (f�g denotes the fractional part),
which was used in [9] to give some improvements on results of Hardy and Littlewood [19, 20], and
Ostrowski [23], and a simplified proof of a theorem of Sós [29]. (See also [25, 26].) One of the main
results of [19,20, 23] is that if α = [0;a1;a2; : : :] and ai � A for all i, then, for some positive constant cA,
Cα(m)> cA logm holds for infinitely many m, and Cα(m)<�cA logm holds for infinitely many m. We
show in [9] (among other things) that the same conclusions hold if the ai are bounded infinitely often on

the average, that is, if 1=t ∑
t
j=1 a j � A for infinitely many t.

One can also use Application 5 to prove an old formula of Lerch [21]: ∑
m
k=1 [kα]+∑

[mα]
k=1 [k1=α] =

m[mα]. This proof seems a little complicated, and it was asked at the conference whether there is
not a more direct proof. Within a day or so, Jano Manuch showed the author a very short completely
elementary proof.
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