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Abstract

For positive integers s and ¢, let f(s,7) denote the smallest positive integer N such that every 2-
coloring of [1,N] ={1,2,...,N} has a monochromatic homothetic copy of {1,1+s,1+s+1¢}.

We show that f(s,7) = 4(s+1)+ 1 whenever s/g and /g are not congruent to 0 (modulo 4),
where g = gecd(s,7). This can be viewed as a generalization of part of van der Waerden’s theorem
on arithmetic progressions, since the 3-term arithmetic progressions are the homothetic copies of
{1,14+ 1,1+ 14 1}. We also show that f(s,z) = 4(s+1¢)+ 1 in many other cases (for example,
whenever s > 2t > 2 and ¢ does not divide s), and that f(s,7) < 4(s+¢)+ 1 for all s,z.

Thus the set of homothetic copies of {1,1+s,14s+¢} is a set of triples with a particularly simple
Ramsey function (at least for the case of two colours), and one wonders what other “natural” sets of

triples, quadruples, etc., have simple (or easily estimated) Ramsey functions.

1 Introduction

Van der Waerden’s Theorem on Arithmetic Progressions [5] states that for every positive integer k there
exists a smallest positive integer w(k) such that for every 2-coloring of [1,w(k)] = {1,2,...,w(k)}, there
is a monochromatic k-term arithmetic progression. (In other words, if [1,w(k)] is partitioned in any
way into two parts A and B, then either A or B must contain a k-term arithmetic progression.) The only
known non-trivial values of w(k) are w(3) =9, w(4) = 35, w(5) = 178. Furthermore the estimation of
the function w(k) for large k is one of the most outstanding (and presumably one of the most difficult)
problems in Ramsey theory. For a discussion of this, see [2].

The function w(k) is often called the Ramsey function for the set of k-term arithmetic progressions.
Landman and Greenwell [3, 4] considered the Ramsey function g(n) of the set of all n-term sequences
that are homothetic copies (see the definition below) of {1,2,2+¢,2+¢+1%,... .24+t +1>+- - +1" 2}
for some positive integer ¢. They obtained a lower bound for g(n) and an upper bound for g (3), where
the (r) indicates that r colours are used. Other “substitutes” for the set of k-term arithmetic progressions
were introduced in [1].

In contrast, in this paper we consider the Ramsey function associated with a much smaller set of

sequences, namely the set of homothetic copies of {1,1+s,1+s+1¢} for given positive integers s and 7.
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A homothetic copy of {1,1+s,1+s+1¢} is any set of the form {x,x+ ys,x+ ys+ yt}, where x
and y are positive integers. From now on, let us agree to use the term “(s,#)-progression” to refer to a
homothetic copy of {1,1+4s,1+s+7}.

Instead of considering 3-term arithmetic progressions, as in the case k = 3 of van der Waerden’s
theorem, we consider the set of (s,#)-progressions for given positive integers s and . (Note that the
(1,1)-progressions are the 3-term arithmetic progressions.)

For positive integers s and ¢ we define f(s,t) to be the smallest positive integer N such that every
2-colouring of [1,N] has a monochromatic (s,)-progression. Note that f(s,) = f(t,s). We will use this
fact several times.

We show that for all positive integers s and ¢, if s/g # 0 and ¢/g # 0 (mod 4), where g = ged(s, ),
then f(s,7) =4(s+1)+ 1. A special case of this is w(3) = f(1,1) = 9. Thus this result can be viewed as
a generalization of the case k = 3 of van der Waerden’s theorem.

We also show that f(s,r) < 4(s+1¢)+ 1 for all s and ¢, and we show that even if s/g=0or7/g=0
(mod 4), the equality f(s,t) = 4(s+1) + 1 still holds, except for a small number of possible exceptions.
For example, we are unable to find the exact value of f(4m, 1), although we show in Theorem 4 that
4(4m+1) < f(4m,1) <4(4m~+ 1) + 1. The remaining cases where f(s,#) is unknown are described in

Section 4.

2 Upper bounds

First we give a simple proof of the weak bound f(s,z) < 9s+ 8¢, which is subsequently refined (in
Theorem 2 below) to give the stronger bound f(s,#) < 4(s+1¢) + 1. The equality w(3) = 9 will be used
in our proof of this weak bound, but will not be used again.

We prove f(s,t) < 9s+ 8¢ by contradiction. Assume that f(s,7) > 9s+ 8¢, and let [1,9s + 8]
be 2-coloured, using the colours Red and Blue, in such a way that there is no monochromatic (s,?)-
progression. Since w(3) =9, the set {s,2s,3s,...,9s} contains a monochromatic (say in the colour Red)
3-term arithmetic progression. Let us suppose, in order to simplify our notation, that this Red progression
is {s,5s,9s}. (In all other cases, the argument is essentially the same.)

Consider the (s,1)-progressions {s,5s,5s+4t}, {55,9s,9s+ 41}, {s,9s,95+ 8¢ }. Since by assumption
none of these is monochromatic, and s, 5s, 9s are all Red, it follows that {5s+4¢,9s + 41,95+ 8t} is a
Blue (s,7)-progression, a contradiction, completing the proof.

The following theorem will be useful in obtaining both upper and lower bounds for f(s,?).
Theorem 1. Let s,1,c be positive integers. Then f(cs,ct) = c(f(s,t) — 1)+ 1.

Proof. Let M = f(s,t). Let B be a 2-colouring of [1,c(M — 1) + 1]. Since every 2-colouring of [0,M — 1]
contains a monochromatic (s,#)-progression, every 2-colouring of {l,c+1,2c¢+1,...,(M —1)c+ 1}
contains a monochromatic (cs, ct)-progression. Thus, f(cs,ct) < c(M —1) + 1.

On the other hand, we know there is a 2-colouring, B, of [1,M — 1] that contains no monochromatic
(s,1)-progressions. Define B’ on [1,c¢(M — 1)] by B'([c(i — 1)+ 1,ci]) = B(i), fori=1,....M — 1. We
will show that B’ avoids monochromatic (cs, ct)-progressions, which will complete the proof.



Assume, by way of contradiction, that x,x,,x3 is a (cs, ct)-progression, contained in [1,c(M — 1)],
that is monochromatic under B’. Then there exists r > 0 such that x3 —xy = rct, xp — x; = res. Let
yj = [x;/c] for j=1,2,3. Then y3 —y» = [x3/c] — [x2/c] = rt, and similarly y, —y; = rs.

Hence y1,y2,y3 is an (s,¢)-progression. Also, B(y;) = B([x;/c|) = B'(x;), for each j. This contra-

dicts our assumption that there is no monochromatic (s,#)-progression relative to the colouring B. O

Note that this proof easily extends to a proof that if f(ay,...,a;) = M, then f(cay,...,car) = c(M —
1)+ 1, where f(ay,...,a;) denotes the least positive integer N such that every 2-coloring of [1,N] will
contain a monochromatic homothetic copy of {1,14+a;,1+a;+az,...,1+a;+ar+--- +ax}.

Theorem 2. For all positive integers s and t, f(s,t) <4(s+1)+ 1.

Proof. Let s,t be given. We may assume without loss of generality that s <f. We may also assume

that ged(s,7) = 1, for if we knew the result in this case then, with g¢ = ged(s,?), Theorem 1 would give

fs,0) =gl (s/g,1/g) =1 +1 < g[4(s/g+1/g) +1 1]+ 1 =4(s+1) + 1.
Consider the following set of 20 triples contained in [1,4(s+¢) + 1], which are all (s,)-progressions:

{l,s+1,s+r+1}{s+ 1,25+ 1,25+1+1}

{25+ 1,35+ 1,3s+r+1},{3s+ 1,45+ 1,45+ 1+ 1}

{1,2s+1,2s+2r+1},{s+ 1,35+ 1,35+ 2t + 1}

{25+ 1,45+ 1,45+ 2t +1},{1,3s+ 1,35+ 3¢t + 1}

{s+ 1,45+ 1,45+ 3t +1},{1,4s+ 1,45+ 4t + 1}
{s+t+1,2s+1+1,2s+2r+ 1}, {2s+r+ 1,35+1+ 1,35+ 2t + 1}
Gstt+ L ds 141,45 420+ 1), {s 141,35 41+ 1,354 30 +1}
{2s+r+1,4s+1+ 1,45+ 2t + 1}, {s+t+ 1,45+t + 1,45+ 4t + 1}

{2542t 4+1,354+2t+ 1,35+ 3t + 1},{3s+ 2t + 1,45+ 2t + 1,45+ 3¢t + 1}
{2s+2t+1,4s+2r+ 1,45+ 4t +1},{3s+ 3t + 1,45+ 3t + 1,45+ 4t + 1}

It is straightforward to check (under the assumptions that s < ¢ and ged(s,¢) = 1) that except in the
cases s = 1,1 <t <3, the 15 integers which appear in these 20 triples are distinct. It is then a simple mat-
ter to check all 2-colourings of these 15 integers and verify that each 2-colouring has a monochromatic
triple from the above list of 20 triples. (If one identifies these 15 integers with the numbers 1,2,...,15

via the correspondence
1 1,s+16225+1335+144,45+165,

S+H1+16625+1+1¢735+t+184s+1+109,
2542t +1410,35+2t+1 ¢ 11,45 +2t +1 ¢ 12,

Bs+3+1 ¢ 13,45+3t+1 ¢ 14,45+ 41+ 1 ¢ 15,



the resulting set of 20 triples contained in [1, 15] has a particularly pleasing form.) The cases s = 1,1 <
t < 3 can be checked separately. In all cases we obtain f(s,7) < 4(s+1¢)+ L. O

3 Lower bounds and exact values for f(s,?)

Theorem 3. Let 5,1 be positive integers, and let g = ged(s,t). If s/g Z0 and t/g # 0 (mod 4) then
f(s,r) =4(s+1)+ 1.

Proof. The proof splits naturally into two cases.

Case 1. Assume that s/g and ¢/g are both odd. In view of Theorem 2, we only need to show that
f(s,1) > 4(s+1)+ 1.
First, assume g = 1. Now colour [1,4(s+1¢)] as

101010---10 010101 ---01,

where each of the two long blocks has length 2(s+¢). Assume x,y, z is a monochromatic (s, #)-progression.
Then y = x+ds and z = y + dr, for some positive integer d. Let B} and B, represent [1,2(s+¢)] and
[2(s+1) + 1,4(s +1)], respectively.

In case d is odd, then x and y have opposite parity, and y and z have opposite parity. Since x and y
have the same colour and opposite parity, x is in By, while y is in B;. Hence z is in By, so that y and z
cannot have the same colour, a contradiction.

If d is even, then x, y and z all have the same parity, so they all must be in the same B;. But then
d(s+1) =z—x<2(s+1), and hence d = 1, a contradiction.

If g is unequal to 1, then by Theorem I and the case in which g = 1, f(s,t) = g[f(s/g,t/g) — 1]+ 1>
gl4(s/g+1t/g)+1—1]+1=4(s+1)+ 1. This finishes the proof of Case 1.

Case 2. Assume without loss of generality that s/2 =2 (mod 4). First we assume that g = 1. Then
s =2 (mod 4) and ¢ is odd.

By Theorem 2, we only need to provide a 2-colouring of [1,4(s-+1)] that contains no monochromatic
(s,1)-progression. Let C be the colouring 11001100--- 1100 (i.e., s +¢ consecutive blocks each having
the form 1100).

We proceed by contradiction. Assume that x,y,z is a monochromatic (s,z)-progression. So there
exists a d > 0 such that y —x = ds and z —y = dt. By the way C is defined, if C(i) = C(j) and j—i is
even, then 4 divides j—i. Now since z—x =d(s+¢) < 4(s+1) — 1, we must have that d < 4. The case
d = 2 is impossible, for if d = 2, then C(z) = C(x), z—x = d(s+1) is even, but 4 does not divide z — x,
a contradiction. Hence d is odd. But then, since s = 2 (mod 4), y — x is even yet 4 doesn’t divide y — x,
again a contradiction.

This shows that f(s,7) > 4(s+¢)+ 1 in the case g = 1.

If g is unequal to 1, we proceed just as at the end of Case 1. O

Suppose that s/g = 0 (mod 4), where g = gcd(s,?). Then /g is odd, and in the case t/g = 1, that is,

t divides s, we have the following result.



Theorem 4. Let m,t be positive integers. Then either
f(4me,t) =4(4mt +1) —t+ 1 or f(4mt,t) = 4(4mt +1) + 1.

Proof. By Theorem 1, it is sufficient to show that 4(4m+ 1) < f(4m,1) < 4(4m+ 1)+ 1. By Theorem
2, we only need to show that 4(4m+ 1) < f(4m,1). Thus it suffices to find a 2-colouring of [1, 16m + 3]
that avoids monochromatic (4m, 1)-progressions. Let ) be the colouring 1A0BOC1D0, where

A =00110011---0011 has length 4m
B=11001100---11 has length 4m —2
C =11001100---1100 has length 4m
D =00110011---0011 has length 4m.

Assume x,y,z is a monochromatic (4m, 1)-progression. We shall reach a contradiction. We know
there exists a positive integer d such that y — x = 4md and z —y = d. Hence, d(4m+1) < 16m+2, so
that d < 3. Let

S| = [2,4m+ 1] (corresponds to A above)

Sy = [4m + 3,8m)] (corresponds to B above)

S3 = [8m+2,12m+ 1] (corresponds to C above)
S4 = [12m+ 3,16m + 2] (corresponds to D above).

Case 1. d = 1. Then y,z belong to the same S;, for some 1 < i < 4. Denote by S(i, j) the jth element of
S;. We see that y = S(i, j) for some odd j. Note that for each even p, if i = 2 or 4, then y(S(i— 1), p) is
unequal to x(S(i,p—1)). Nowifi=2ori=4,thenx=y—4m=S(i—1, j+ 1), so that (by the preceding
remark), ¥ (x) is different from x(y), a contradiction. Now if i=3 and j > 1, then y —4m = S(2,j — 1),
and x(x) = x(y —4m) is unequal to x(y), a contradiction. If i =3 and j =1, then x = 4m + 2 and
y = 8m+ 2, and these again have different colours.

Case2. d=2. Theny—x=28mand z—y=2. If x(y) = x(z) then y must be one of the following:
4m+1,8m,12m+ 1; and since y — x = 8m, this reduces the possibilities for y to only 12m + 1. However
we see that y(4m + 1) is unequal to ¥ (12m+ 1), a contradiction.

Case 3. d=3. Then y—x = 12m and z —y = 3. Clearly x belongs to [1,4m], so that y belongs
to [12m + 1,16m]. Now [1,4m] has colouring 1 0011---001100 1 while [12m + 1,16m] has colour-
ing 0100110011 ---001100. Hence, since x(x) = x(y), y belongs to the set {12m +3,12m +5,12m +
7,...,16m —1}. Now z belongs to [12m +4,16m+ 3], so let’s compare the colouring of [12m + 1, 16m)]
to that of [12m +4,16m+ 3]: [12m+ 1,16m] has colouring as noted above, while [12m + 4, 16m + 3]
has colouring 0 11001100---11 0. Hence, in order for x(y) = x(z), y must belong to the set {12m +
1,12m+2,12m+4,12m+6, ..., 16m}, a contradiction. O



Theorem 5. Let st be positive integers such that s >t > 1 and t does not divide s. If |s/t] is even or
|2s/t| is even, where || is the floor function, then f(s,t) = 4(s+1t)+ 1. If |s/t] and |2s/t| are both
odd, then f(s,t) =4(s+1t) + 1 provided s,t satisfy the additional condition s/t ¢ (1.5,2).

Proof. Let s,t satisfy the hypotheses of the theorem. By Theorems 1 and 2, it suffices to show that
f(s,t) > 4(s+1) + 1 under the additional assumption that ged(s,7) = 1, hence throughout the proof we
assume ged(s,7) = 1.

Let a = |s/t] and b = |2s/t]. Then s = at + r, where 0 < r < t. Also, 2s = 2ar +2r, so if 2r =1t
we would have ¢ = 2. However, since ged(s,7) = 1, the case t = 2 is already covered by Theorem 3.

Therefore we assume throughout that proof that 2r # ¢.

Case 1. We assume that a is even and b is odd. Thenb=2a+1,2r > ¢, and 2(s+1t) =2(at +r)+2t =
(b—1)t+2r+2t=(b+2)t+ (2r—1).

Hence we can colour [1,4(s +1)] as follows. Let
C = QROR---QRQJ RORQ---RORJ’,

where Q = 11---1 and R = 00---0 each have length ¢, J = 00---0 and J' = 11---1 each have length
2r —t, and where each of Q and R appears b+ 2 times.

Suppose x,y,z is any (s,#)-progression in [1,4(s+¢)] with y —x = ds, z—y = dt. We will show that
{x,y,z} is not monochromatic. Clearly d < 3, since d(s+1)z—x < 4(s+1) — 1.

If d =2, then z—x = 2(s+1), so C(z) # C(x). (This is because the colouring on the second half of
[1,4(s+1)] is the reversal of the colouring on the first half.)

If d = 3, then, since z = y+ 3¢ and C(i) # C(i +1) for all i > 2(s +1), if C(y) = C(z) we must have
y < 2(s+1); but then x =y — 35 < 2r — s. However, the conditions s >, s =at+r, 0 < r <t, a even,
imply that s > 2¢, hence x < 0, a contradiction.

Now assume that d = 1 and C(y) = C(z). Since z = y+1¢, y must occur in the block J, so C(y) = 0.
Since J has length 2r —t < r, we see that y — r must occur in the block Q just to the left of block J, so
that y — at — r = x also occurs in a block Q, and C(x) = 1.

Hence there is no monochromatic (s,#)-progression with respect to the colouring C, therefore f(s,7) >
4(s+1t)+ 1. This finishes Case 1.

Case 2. We assume that a is odd and b is even. Again we have s =ar+r, 0 < r < ¢, but now b = 2aq,
2r<t,and 2(s+1) = (b+2)t +2r.
Now colour [1,4(s +¢)] with the colouring

D= QROR---QRK RORQ---ROK’,

where Q, R are defined as in Case 1, and K = 11---1,K’ = 00---0 each have length 2r.
Assume x,y,z is an (s,)-progression contained in [1,4(s+¢)], with y —x =ds, z—y = dt; then d < 3.
If d = 2, then as in Case 1, D(x) # D(z).
If d = 3, and D(y) = D(z), then as in Case 1, y < 2(s+1¢). In fact, since K and R have opposite
colours, y < 2(s+1) — 2r. On the other hand, y > 14 3s > 25+t +r+ 1, so y is an element of the last



occurrence of R in [1,2(s+¢)], hence D(y) =0. Thenx =y —3s < 2(s+¢) —2r—3s <t,so D(x) =1
and D(x) # D(y).

Now assume d = 1 and D(y) = D(z). Then y belongs to the last occurrence of R in [1,2(s +1)],
and y =i (mod ¢), where 2r < i < t. Hence, since a is odd, x = y — (at + r) lies in one of the Q’s, and
D(x) =1,D(y) =0.

Thus, no monochromatic (s,)-progression exists in [1,4(s +1)], hence f(s,t) > 4(s+17) + 1.

Case 3. We assume that both @ and b are even. Then s =at+r, b =2a,0<2r <t, and 2(s+1¢) =
(b+2)t+2r. Note that a > 2, since s > ¢.
We define the colouring E on [1,4(s+1)] as follows. Let us use the notation ~0=1and ~ 1 =0.

Then we define, in turn,
(1) E()=1,1<i<r,
(2) E()=~E(i—n1,r<i<t,
(3) E(i) =~E(i—1),1 <i<2(s+1),
4) E(i))=~E(@i—2(s+1)),2(s+1) <i<4(s+1).

That is,
E=XYXY---XYLYXYX---YXL,

where X has length ¢ and consists of [#/r] blocks, each block of length r, followed by a single block of
length t — |z/r|r, the blocks alternating in colour; Y is the same as X, except the colours are reversed; L
is X restricted to [1,2r]; and L’ is the same as L, except the colors are reversed.

Let x,y,z be an (s,7)-progression contained [1,4(s+1¢)], withy—x =ds, z—y = dt.

If d =2, then by (4), E(x) =~ E(z).

Ifd=3and E(y) = E(z), theny <2(s+17),hencex=y—3s <2t —s =2t —(at+r) < —-r <0, a
contradiction.

Ifd=1and E(y) = E(z), then y < 2(s +1). We consider two subcases.

The first subcase is y = i (mod 1), r+ 1 < i <t. Then y and y — r are in the same block (X,Y or L) hence
by (2) E(y) =~ E(y—r). By (3), and the fact thata iseven, E(y) =~ E(y—r) =~ E(y—at —r) =~ E(x).

The second subcase is y =i (mod ¢), 1 <i <r. Since E(y) = E(z) = E(y+1), y must belong to the
block L, thatis, y = (b+2)t+i= (2a+2)t+i, 1 <i<r. Sincex=y—s= (2a+2)t+i—at—r=
(a+1)t+(i+t—r),and 1 <i+t—r<t,by ) E(x) =~ E(i+t—r). Also, sincey = 2(s+1) —2r+1i,
wehave z=y+t=2(s+1)+ (i+t—2r),soby 4), E(z) =~ E(i+t—2r). Since | <i+1—-2r<t,(2)
gives E(z) = E(i+1t—r) =~ E(x).

Thus, under the colouring E, there is no monochromatic (s,7)-progression in [1,4(s + )], hence
f(s,t) >4(s+1)+1.

Case 4. Assume that both a and b are odd, and s/r ¢ (1.5,2). It follows that s = ar +r, 0 < r <1,
b=2a+1,t<2r,and 2(s+1) = (b+2)t + (2r —t). Also, a > 3, as a consequence of the assumption

s/t (1.5,2).

Let p =t —r. Then p < t/2. Define the colouring F by setting, in turn,



(6) F(i)=~F(i—p),p<i<p,
(T) F(i) =~ F(i—1),t <i<2(s+1),
(8) F(i) =~ F(i—2(s+1)), 2(s+1) < i < 4(s +1),

That is,
F = ABAB---ABAM BABA - --BABM',

where A and B are the same as blocks X and Y in Case 3, except that p replaces r; M is B restricted to
[1,2r —t]; and M’ is the same as M with the colours interchanged.

Let x,y,z be an (s,¢)-progression contained in [1,4(s +7)], withy —x =ds, z—y = dt.

If d = 2, then by (8), E(x) =~ E(z).

Ifd=3and E(y) = E(z), theny < 2(s+7), hence (sincea > 3) x=y—3s <2t —s =2t — (at +71) <0,
a contradiction.

Ifd =1and E(y) = E(z), then y < 2(s+¢), and we again consider two subcases.

The first subcaseisy=ut+i, | <i<r. Then 1 <i<i+p=i+t—r<t,s0by(6), F(i+p)=~F(i).
Using (7) and the oddness of a, we get F(x) = F(y—at—r) =F(ut — (a+ 1)t +i+t—r) =F(ut +i+
t—r)=F(ut+i+p) =~ F(ut+i) =~ F(y).

The second subcase is y = ut +i, r+ 1 < i <t. Since F(y) = F(y-+t) and M has fewer than i elements,
y must belong to the last occurrence of the block A in [1,2(s+1¢)]. Since 2(s+1¢) = (b+2)t + (2 —r),
this means that y = (b+ 1)r + i, hence by (7), F(y) = F(i). Sincex=y—at—r= (b+ 1)t +i—at —r,
we have F(x) =~ F(i—r)=F(i+t—r) =F(i+ p) =~ F(i) =~ F(y).

Thus, under the colouring F, there is no monochromatic (s,7)-progression in [1,4(s + )], hence
fs,t) >4(s+1)+1. O

4 Remarks

By Theorems 1 and 3, we would know the value of f(s,t) for all 5,7 provided we knew the value of
f(4m,t) when ¢ is odd, and gcd(m,t) = 1. (Here we are using f(s,t) = f(t,s).) Theorem 4 shows
4(4m+1) < f(4m,1) < 4(4m+ 1)+ 1. Theorem 5 takes care of many of the cases where ¢ > 1. For
example, Theorem 5 shows that f(4m,3) = 4(4m+ 3) + 1 whenever 3 does not divide m. By examining
the cases not covered by Theorem 5, one sees that these are exactly the cases f (¢ +r,7) where 0 < r <
t < 2r, and 4 divides ¢ or 4 divides ¢ + r.

The computations f(4,1) =20, f(8,1) =36, f(12,1) = 52 suggest that perhaps f(4m, 1) = 4(4m+
1) forallm > 1.

For positive integers r,ay,...,a,, let f (r (a1,...,a,) denote the smallest positive integer N such that
every r-colouring of [1,N] ha a monochromatic homothetic copy of {1,1+ay,...,14+a;+---+a,}. Of
course f() (ai,---,a,) always exists (by a statement of van der Warden’s theorem which involves any
number of colours), but perhaps one can say something about the rate of growth of f' ) (a1,-..,a,) as
a function of a; 4 --- +a,. The computations f)(1,1,1) =35, f)(1,1,2) = 38, f@)(1,1,3) = 44,



FA(1,1,4) =56, f2(1,1,5) = 59 suggest that f(2)(1,1,n) does not grow linearly with n. Perhaps
FA,1,n) ~ c2m.

We have no idea of the growth rate of f©)(s,7) as a function of s +1.
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