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Abstract

We describe a particular partition of the non-negative integers which consists of infinitely many

translates of an infinite set. This partition is used to show that a certain van der Waerden-like theorem

has no simple canonical version. The partition is also used to give a lower bound for one of the classical

van der Waerden functions, namely w(3;m), the smallest positive integer such that every m-coloring

of [1;w(3;m)] produces a monochromatic 3-term arithmetic progression. Several open questions are

mentioned.

Introduction

Let S denote the set of all distinct sums of odd powers of 2, including 0 as the empty sum. Then every
non-negative integer can be written uniquely in the form s+t, where s2 S and t 2 T , and define f (n) = s.
In other words, if n = ∑i odd 2i +∑i even 2i, then f (n) = ∑i odd 2i. For this coloring f , the set of colors is
S, and for each s 2 S, f is constant on the “color class” s+T .

A van der Waerden-like theorem, and its canonical version

We need the following definition.

Definition 1. If A = fa1 < a2 < � � � < ang � ω = f0;1;2; : : :g, n � 2, the gap size of A is gs(A) =
maxfa j+1�a j : 1 � j � n�1g. If jAj= 1, gs(A) = 1.

Theorem 1. If ω is finitely colored, there exist a fixed d � 1 (d depends only on the coloring) and

arbitrarily large (finite) monochromatic sets A with gs(A) = d.
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This fact first appeared in [3]. A proof can be found in [12]. Various applications appear in [4, 6, 11,
13].

Theorem 1 is somewhat similar in form to van der Waerden’s theorem on arithmetic progressions
[15]. (Van der Waerden’s theorem says that for every k, every finite coloring of the positive integers
produces a monochromatic k-term arithmetic progression.) However, Theorem 1 differs in a number of
ways:

Van der Waerden’s theorem does not imply Theorem 1, since the d in the conclusion of Theorem 1 is
independent of the size of the monochromatic sets A. Beck [1] showed the existence of a 2-coloring of ω

such that if A is any monochromatic arithmetic progression with common difference d, then jAj< 2logd.
Hence the presence of large monochromatic arithmetic progressions, which is guaranteed by van der
Waerden’s theorem, is not enough to imply Theorem 1. Somewhat earlier, Justin [10] found an explicit
coloring such that if A is any monochromatic arithmetic progression with common difference d, then
jAj< h(d); in his example, the coloring is explicit but the function h(d) is not.

Theorem 1 (which has a simple proof) does not imply van der Waerden’s theorem in a simple way.
(In Chapter 14 of [8], Hindman and Strauss give a proof that Fact 1 does in fact imply van der Waerden’s
theorem – and at this point in their book, the proof does seem simple – however, a fair amount of
machinery has been developed by this point.)

Theorem 1 does not have a density version corresponding to Szemerédi’s theorem [14]. That is, there
exists a set X � ω with positive upper density for which there do not exist a fixed d � 1 and arbitrarily
large sets A = fa1 < a2 < � � �< ang � X with gs(A) = d. For an example of such a set X , see [2].

Finally, no “canonical version” of this result is known. The Erdős-Graham canonical version of van
der Waerden’s theorem ( [7]) states that if g : ω ! ω is an arbitrary coloring of ω (using finitely many
or infinitely many colors) then there exist arbitrarily large arithmetic progressions A such that either g is
constant on A, i.e. jg(A)j= 1, or g is one-to-one on A, i.e. jg(A)j= jAj.

We show that there is no such canonical version of Theorem 1. This is Corollary 1 below.
A very brief sketch of an outline of a proof of the following result has appeared in [5]. It seems

worthwhile to fill in some of the missing details.

Theorem 2. For every A � ω (with f as described in the introduction),

1
4

p
jAj=gs(A)< j f (A)j< 4

p
jAjgs(A)

Corollary 1. For the coloring f above, there do not exist a fixed d and arbitrarily large sets A with

gs(A) = d on which f is either constant or 1-1.

Proof of Corollary 1. If 16gs(A)� jAj, then by Theorem 2, 1 < j f (A)j< jAj.

To prove Theorem 2, we need the following definition.

Definition 2. For k� 0, an aligned block of size 4k is a set of 4k consecutive non-negative integers whose

smallest element is m4k, for some m � 0.
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Proof of Theorem 2. Note that the first aligned block of size 4k, namely [0;4k�1] = [0;22k�1], is in 1-1
correspondence with the set of all binary sequences of length 2k. From this we see (by the definition of
f ) that for n 2 [0;22k �1], there are 2k possible values of f (n), and each value occurs exactly 2k times.
It is easy to see (using the definition of f ) that the same is true for any aligned block [m4k;m4k +4k�1].
We express this more simply by saying that “each aligned block of size 4k has 2k colors, each appearing

exactly 2k times.”

Now we can establish the upper bound in Theorem 2. Let A = fa0 < a1 < a2 < � � �< ang � ω . Then
an � a0 +ngs(A) = a0 +(jAj�1)gs(A), or

an�a0 < jAjgs(A):

Choose s minimal so that A is contained in the union of two adjacent aligned blocks of size 4s. (Two
blocks are necessary in case A contains both m4s�1 and m4s for some m.) Then

4s�1 < an�a0:

Since each aligned block of size 4s has 2s colors,

j f (A)j � 2 �2s:

Putting these three inequalities together gives

j f (A)j< 4
p
jAjgs(A):

Next, we establish the lower bound for j f (A)j, which requires a bit more care. We will use the
following Lemma.

Lemma 1. For each k � 0, an two aligned blocks of size 4k (consecutive or not) are either colored

identically, or have no color in common.

Proof of Lemma 1. Consider the aligned blocks [p4k; p4k +4k �1] and [q4k;q4k +4k �1]. By the defi-
nition of f (and since 4k is an even power of 2), f (p4k) = f (p)4k, so that f (p4k) = f (q4k) if and only if
f (p) = f (q). Also, for 0 � j � 4k �1, f (p4k + j) = f (p4k)+ f ( j). This last equality obviously holds
if p = 0, and for p > 0 it holds since then each power of 2 which occurs in j is less than each power of
2 which occurs in p4k. Thus the blocks [p4k; p4k +4k�1] and [q4k;q4k +4k�1] are colored identically
if f (p) = f (q), and have no color in common if f (p) 6= f (q).

Proceeding with the lower bound in Theorem 2, we note that for k � 1, the colors of any aligned
block of size 4k have the form UUVV , where U and V are blocks of size 4k�1.

Next, we note that any block of size 4k, aligned or not, contains at least 2k colors. for let A be any
block of size 4k. Let the first element of A lie in the aligned block S of size 4k, and let T be the aligned
block of size 4k which immediately succeeds S. If S and T are colored identically, then the elements of
f (A) are just a cyclic permutation of the elements of f (S), and hence the block A contains exactly 2k

colors. By Lemma 1, the remaining case is when S,T have no color in common. In this case, by the
preceding paragraph, f (S) f (T ) = UUVV XXYY , where no two of U;V;X ;Y have a color in common,
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and so U;V;X ;Y are of size 4k�1. Then f (A), which has size 4k, contains either UV or V X or XY , and
so has at least 2k�1 +2k�1 = 2k colors.

Finally, we note that for s � 1, k � 1, every set of 4s consecutive aligned blocks of size 4k contains
at least 2s blocks of size 4k, no two of which have a common color. This follows from the fact that these
ps blocks have the form [p4k; p4k +4k �1], t � p � t +4s�1, for some t. The block f ([t; t +4s�1])
has at least 2s colors, by the preceding paragraph. If f (p) 6= f (q), where t � p < q � t + 4s � 1, then
f (p4k) 6= f (q4k), so by Lemma 1 the two blocks [p4k; p4k +4k�1] and [q4k;q4k +4k�1] have no color
in common.

Now let A�ω be given. Choose k so that 4k�1 � gs(A)< 4k. Choose t minimal so that A is contained
in the union of t consecutive aligned blocks of size 4k. Then A meets each of these blocks (by the choice
of k), and

jAj � t4k:

Choose s so that 4s � t < 4s+1. Then among the t consecutive aligned blocks of size 4k are at least 2s

blocks of size 4k, no two of which have a color in common. Since each of the t blocks meets A, we have

2s � j f (A)j:

Thus jAj � t4k < 4 �4s �4 �4k�1 � 4j f (A)j2 �4 �gs(A), so 1
4

p
jAj=gsA < j f (A)j.

A bound for a van der Waerden function

Definition 3. For m � 1, let w(3;m) denote the smallest positive integer such that every m-coloring of

[1;w(3;m)] produces a monochromatic 3-term arithmetic progression.

Theorem 3. For all m � 1, w(3;m)> 1
2 m2.

Proof. For k � 1, the coloring f described in the introduction colors the interval [0;22k+1 � 1] with
2k colors. The colors are the sums (including 0 as the empty sum) of distinct elements of the set
f21;23;25; : : : ;22k�1g. The color classes are subsets of the translates (by the 2k colors) of the set Sk of
sums (including 0 as the empty sum) of distinct elements of the set f20;22;24; : : : ;22kg= f40;41;42; : : : ;4kg.
It is easy to see that Sk contains no 3-term arithmetic progression. Hence, with respect to the col-
oring f , there is no monochromatic 3-term arithmetic progression in [0;22k+1 � 1]. The coloring f

shows that for k � 1, w(3;2k) > 22k+1. For a general m, choose k so that 2k � m < 2k+1. Then
w(3;m)� w(3;2k)> 22k+1 = 1

2 22k+2 < 1
2 m2.

Remarks

1. The lower bound in Theorem 3 is not the best possible. Indeed, in the standard reference Ramsey
Theory (by R. L. Graham, B. L. Rothschild, and J. H. Spencer, 2nd edition, 1990, John Wiley &
Sons, New York), the authors show that for some positive constant c, w(3;m)> m(c logm).
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2. Of course, one would like to have an upper bound for the function w(3;m). The only bound known
to me is w(3;m) <

�m
4

�3m
for m > 4. This bound comes from [9], and is mentioned in [12]. The

coloring f on [0;22k+1 � 1], with 2k colors, is perhaps “efficient” in stopping all monochromatic
3-term arithmetic progressions. Cutting the number of colors in half would seem to leave too few
colors. If this were in fact true, then w(3;2k�1)� 22k+1 would follow, and for general m one would
then have 1

2 m2 < w(3;m)< 8m2.

3. Corollary 1 shows that a constant/1-1 canonical version of Theorem 1 is not true. We also know
by the Bergelson/Hindman/McCutcheon example that a density version of Theorem 1 is not true.

The following three simple examples, involving only 3-element sets, illustrate various combina-
tions of the truth or falsity of the “constant/1-1 versions” and the “density versions.”

(a) The simplest non-trivial case of van der Waerden’s theorem says that every finite color-
ing of the positive integers produces a monochromatic 3-term arithmetic progression. The
constant/1-1 version of this reselt holds by the Erdős-Graham theorem, and the density ver-
sion holds by Szemerédi’s theorem.

(b) Schur’s theorem says that if the positive integers are finitely colored, then there is a monochro-
matic solution of x+ y = z. The density version does not hold by taking all the odd integers.
The constant/1-1 version does not hold by coloring each x with the highest power of 2 divid-
ing x.

(c) At the meeting, Kevin O’Bryant showed me this example: if the positive integers are finitely
colored, then there is a monochromatic 3-term geometric progression (a set of the form
fa;ad;ad2g). To get the constant/1-1 version, let a coloring g of the positive integers be
given. define a new coloring h by setting h(x) = g(2x). Then, by the Erdős-Graham theorem,
there is a set fa;a+d;a+2dg on which the coloring h is either constant or 1-1. The density
version does not hold, since the set of square-free numbers has positive density.

(d) It seems natural to ask for a collection P of 3-element sets (if such a collection exists!) for
which: (i) Every set of positive integers with positive upper density contains an element of
P; (ii) It’s not the case that for every coloring of the positive integers, there is an element of
P on which the coloring is either constant or 1-1.

4. It would be nice to be able to say something about general colorings along the lines of Theorem 1.
Perhaps the following is true: if ω !ω is an arbitrary coloring of ω , then there exist a fixed d � 1
and arbitrarily large (finite) sets A with gs(A) = d such that either

(a) at most
p
jAj distinct colors appear in gjA; or

(b) each color appears in gjA at most
p
jAj times.

Note that for the particular coloring f , if we take d = 1, and let A = [0;4k�1], then exactly
p
jAj

distinct colors appear in f jA, and each color appears in f jA exactly
p
jAj times.

5. We have used a particular partition of ω . We would get another partition of ω (into infinitely many
translates of an infinite set) by replacing the odd powers of 2 and the even powers of 2 by arbitrary
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A and B, where fA;Bg is any partition of f1;2;3; : : :g into two infinite sets. Perhaps it’s possible
to describe all of the partitions of ω into infinitely many translates of an infinite set.
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