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Abstract

We make some observations concerning the conjecture of Erdős that if the sum of the reciprocals

of a set A of positive integers diverges, then A contains arbitrarily long arithmetic progressions. We

show, for example, that one can assume without loss of generality that A is lacunary. We also show

that several special cases of the conjecture are true.

1 Introduction

The now famous theorem of Szemerédi [7] is often stated:
(a) If the density of a set A of natural numbers is positive, then A contains arbitrarily long arithmetic

progressions.

Let us call a set A of natural numbers k-good if A contains a k-term arithmetic progression. Call A

ω-good if A is k-good for all k � 1. We define four density functions as follows: For a set A and natural
numbers m;n, let A[m;n] be the cardinality of the set A\fm;m+1;m+2; : : : ;ng. Then define

δ (A) = liminf
n

A[1;n]
n

;

δ (A) = limsup
n

A[1;n]
n

;

u(A) = lim
n

min
m�0

A[m+1;m+n]
n

and

u(A) = lim
n

max
m�0

A[m+1;m+n]
n

:

It can be seen that the limits in the definitions of u and u always exist. These four “asymptotic" set
functions are called the lower and upper “ordinary" and the lower and upper “uniform" density of the set
A respectively. They are related by

u(A)� δ (A)� δ (A)� u(A)

for any set A.
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Szemerédi actually proved:
(b) If u(A)> 0, then A is ω-good. Hence we also have
(c) If δ (A)> 0, then A is ω-good.

In fact, Szemerédi proved the following “finite" result (which we state in a general form to be used
later):

(d) Let ε > 0 and k 2 N = f1;2;3; : : :g. Then there exists an n0 2 N such that if P is any arithmetic

progression of length jPj � n0 and A� P with jAj � εjPj, then A is k-good.

It is not hard to prove (without assuming the truth of any of the statements) that (b), (c), and (d) are
equivalent.

Erdős has conjectured that the following stronger statement holds:
(e) If A� N and ∑A

1
a = ∞, then A is ω-good.

By ∑A(1=a) we mean of course ∑a2A(1=a). The proof (or disproof) of (e) is, at present, out of sight.
In fact, it has not even been proved that ∑A(1=a) = ∞ implies that A is 3-good (compare Roth [6]). That
(e) ) (c) can be seen as follows: If δ (A) = ε > 0, then there exists a sequence of natural numbers
0 = n0 < n1 < n2 < � � � , such that, for each i,

A[1;ni]

ni
>

ε

2
and

ni�1

ni
<

ε

4
:

Then

∑
A

1
a
� ∑

a2A
a�nk

1
a
�

k

∑
i=1

A[ni�1 +1;ni]

ni
�

k

∑
i=1

A[1;ni]�ni�1

ni

� k(
ε

2
� ε

4
) =

kε

4
! ∞ (k ! ∞)

and so ∑A(1=a) = ∞. Assuming (e), it follows that A is ω-good.

Hence Erdős’ conjecture is indeed stronger than Szemerédi’s theorem. Note also that Erdős’ conjec-
ture, if true, would immediately answer in the affirmative the long-standing question of whether or not
the primes are ω-good.

In the next section we make some observations regarding this conjecture, and we show that several
special cases of the conjecture are true.

Other observations can be found in Gerver [3, 4] and Wagstaff [8].

2 Main results

(2.1). First we consider the “finite form" of Erdős’ conjecture.

Theorem 1. Fix k, and assume that for all sets A � N, if ∑A(1=a) = ∞ then A is k-good. Under this

assumption, there exists T such that if ∑A(1=a)> T , then A is k-good.

(Gerver [3] has this result under the stronger hypothesis that if ∑A(1=a) = ∞ then A is (k+1)-good.)
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Proof. We may assume k � 3. Suppose the theorem is false. We will construct a set A such that

∑A(1=a) = ∞ and A is not k-good. Choose a finite set A0 such that A0 is not k-good and ∑A(1=a) > 1.
Let p1 be prime, p1 > 2maxA0, and choose a finite subset A1 of ft p1 : t � 1g such that A1 is not k-good
and ∑A1

(1=a) > 1. Let p2 be prime, p2 > 2maxA1, and choose a finite subset A2 of ft p2 : t � 1g such
that A2 is not k-good and ∑A2

(1=a)> 1. Continuing in this way, we obtain finite sets A0;A1; : : : such that
for each i� 0, Ai is not k-good, minAi+1 � pi+1 > 2maxAi, each elements of Ai+1 is a multiple of pi+1,
and ∑Ai(1=a)> 1.

Let A =
S

Ai. It is clear that ∑A(1=a) = ∞. To show that A is not k-good, it suffices to show that
every 3-term arithmetic progression contained in A must be contained in a single set Ai.

To this end, suppose that x < y < z, with x;y;z 2 A and z� y = y� x. Let y 2 Ai. Then z 2 Ai also,
since otherwise z� y � minAi+1�maxAi > maxAi > y� x. Thus y;z 2 Ai � ft pi : t � 1g. Hence x is
divisible by pi, so x� pi > maxAi�1, and x 2 Ai. This finishes the proof of Theorem 1.

Corollary 1. The following statement is equivalent to statement (e):

(f) For each k 2 N, there exists T 2 N such that if ∑A(1=a)> T , then A is k-good.

We state next a lemma which will be useful later.

Lemma 1. Let F1;F2; : : : be a sequence of finite subsets of N such that for each i, Fi is not k-good and

minFi+1 � 2maxFi. Then F =
S

Fi is not (k+1)-good.

(The proof of Lemma 1 is contained in the proof of Theorem 1 above).

(2.2). Now we define an increasing sequence, a1 < a2 < a3 < � � � , of natural numbers to be lacunary
if dn = an+1� an ! ∞ as n ! ∞ and to be M-lacunary if, furthermore, dn � dn+1 for all n. We shall
think of such a sequence simultaneously as a sequence and as a subset of N. Any lacunary sequence A

has u(A) = 0 (see [2]), so that Szemerédi’s theorem does not apply.
A subsequence of a lacunary sequence is lacunary, but the corresponding statement, unfortunately,

does not hold for M-lacunary sequences. It is known that if the real series ∑ ti is not absolutely con-
vergent, then there exists a lacunary sequence B such that ∑i2B ti diverges (see Freedman and Sem-
ber [2]). It follows that if A�N and ∑A(1=a) = ∞, then there exists a lacunary sequence B� A such that

∑B(1=b) = ∞. Thus we have the following.

Theorem 2. The following statement is equivalent to statement (e).

(g) If A is a lacunary sequence and ∑A(1=a) = ∞, then A is ω-good.

Hence we need only investigate lacunary sequences when contemplating the Erdős conjecture. It can
also be shown that if ∑ ti = ∞ and ti � 0 for all i, then there exists an M-lacunary sequence B such that

∑i2B ti = ∞. (We omit the rather cumbersome proof of this statement.) But notice that this does not imply
that statement (h) below is equivalent to statement (e)! This is too bad–because we now prove (h).

Theorem 3. The following statement is true:

(h) If A is M-lacunary and ∑A(1=a) = ∞, then A is ω-good.

Proof. Let A = fa1 < a2 < a3 < � � �g be an M-lacunary sequence with infinite reciprocal sum. Assume
there is a k such that di < di+k for each i, where dn = an+1� an, n � 1. We show that ai+ jk � j2=2 for
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all i� 1, j � 0. Indeed,

ai+ jk = ai +di +di+1 + � � �+di+ jk�1

� di +di+k +di+2k + � � �+di+( j�1)k

> 1+2+3+ � � �+ j > j2=2:

(Note that to obtain the first inequality we have merely omitted some terms from the sum.) But then

∞

∑
i=1

1
ai

=
∞

∑
j=0

1
a1+ jk

+
∞

∑
j=0

1
a2+ jk

+ � � �+
∞

∑
j=0

1
ak+ jk

� k(1+
∞

∑
j=1

2
j2 )< ∞; a contradiction.

Hence, for each k, there is an i such that di = di+k, whence ai;ai+1; : : : ;ai+k+1 are in arithmetic progres-
sion and A is ω-good.

The following is an immediate corollary.

Corollary 2. If A is a finite union of M-lacunary sets and ∑A(1=a) = ∞, then A is ω-good.

(2.3). We now use some slightly expanded arguments to show that statement (g) holds for some
special sequences which are not M-lacunary (but are nearly so).

Theorem 4. Let A = fa1 < a2 < a3 < � � �g be any set. Suppose there are intervals In = [sn; tn] with

tn < sn+1 such that
∞

∑
n=1

1pasn

< ∞; ∑
k2
S

In

1
ak

= ∞:

Suppose further that for each n, dk � dk+1 if sn � k < tn. Then A is ω-good.

Proof. We will arrive at a contradiction if we assume that there is a K 2N, such that di < di+K whenever
i; i+K belong to the same interval I j. Then, for any K, we have that there exists an i such that di =

di+1 = � � �= di+K so that ai;ai+1; : : : ;ai+K+1 are in arithmetic progression.
To get the required contradiction we proceed as follows: If n;n+K;n+2K; : : : ;n+ cK 2 Ii, then

1
an

+
1

an+K
+

1
an+2K

+ � � �+ 1
an+cK

� 1
an

+
1

an +dn
+

1
an +dn +dn+K

+ � � �

+
1

an +dn +dn+K + � � �+dn+(c�1)K

<
∞

∑
j=0

1
an +( j2=2)

<
bp
an
� bpasi

(b constant):

Hence,

∑
K2Ii

1
ak

<
Kbpasi

and ∑
k2
S

Ii

1
ak

< Kb
∞

∑
i=1

1pasi

< ∞;
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contrary to assumption.

Using a similar technique we can prove the following theorem.

Theorem 5. Let A = fa1 < a2 < a3 < � � �g be a set. Suppose In = [sn; tn] are intevervals with tn < sn+1

such that di � di+1 if sn � i < tn and dtn�1 < dsn+1. Then, if ∑k2
S

In(1=ak) = ∞, A is ω-good.

(2.4). We now define new density functions λ and λ in terms of lacunary sequences: For all sets A,
let λ (A) = 0 if A is finite or a finite union of lacunary sequences and otherwise let λ (A) = 1. Define
λ (A) = 1�λ (N�A). These densities, taking only 0;1 values, may seem a little odd. The definition
could be improved so that λ becomes “continuous" and has the correct value on an (infinite) arithmetic
progression etc. However, this would not suit our purposes any better. One can prove that for any A�N,

λ (A)� u(A)� δ (A)� δ (A)� u(A)� λ (A)

and so, in analogy to Szemerédi’s theorem it is natural to ask about the arithmetic progressions in A if
λ (A)> 0.

Theorem 6. There exists a set A such that λ (A)> 0 and A is not ω-good.

Proof. Let Bi = f1!;2!; : : : ; i!g. Bi is not 3-good. Let (Hi) be the sequence of sets

(B1;B1;B2;B1;B2;B3;B1;B2;B3;B4;B1; : : :):

Let fi be an increasing sequence of integers such that f1 = 0 and

min( fi+1 +Hi+1)� 2max( fi +Hi)

and define A=
S

i( fi+Hi). By Lemma 1, A is not 4-good. (By choosing fi sufficiently quickly increasing
one can even make A not 3-good.) Finally, λ (A) = 1 since otherwise A = L1[L2[ �� �[Lk where each
L j is a lacunary sequence. Whenever Hi = Bk+1 we have j fi +Hij > k and so some L j has at least two
members in fi +Hi. Hence we may find a fixed j such that

jL j \ ( fi +Bk+1)j � 2

for infinitely many i. Then L j has infinitely many differences dt < (k+1)!, and so L j is not lacunary.

(2.5). Let us consider “relative density", that is, “the density of A relative to B" where A � B. The
definitions are

δ (AjB) = liminf
i!∞

A[1;bi]

i
and

u(AjB) = lim
n!∞

min
m�0

A[bm+1;bm+n]

n
:

δ (AjB) and u(AjB) are obtained by replacing “inf" with “sup" and “min" with “max" respectively. One
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can show, as before, for any A;B;A� B, that

u(AjB)� δ (AjB)� δ (AjB)� u(AjB):

Let B be M-lacunary and ∑B 1=b = ∞. Then, by Theorem 3, B is ω-good. We ask whether A� B and the
relative density of A positive imply that A is also ω-good. The answer is “yes" if u(AjB)> 0 (Theorem 7),
“no" if δ (AjB)> 0 (Theorem 8) and the question is open for δ (AjB)> 0.

Theorem 7. If B is M-lacunary, ∑B 1=b = ∞, A� B and u(AjB)> 0 then A is ω-good.

Proof. By (the proof of) Theorem 3 there are arbitrarily large n;m such that

P = fbm+1;bm+2; : : : ;bm+ng

is an arithmetic progression. By the definition of u(AjB) we have jA\Pj � εP where ε = (1=2)u(AjB)
and jPj is arbitrarily large. Thus, by Szemerédi’s theorem (d) we have, for any k, that jA\Pj is k-good if
jPj is sufficiently large. Hence A is ω-good.

Theorem 8. There exists an M-lacunary sequence B with ∑B = 1=b = ∞ and an A� B with δ (AjB)> 0
(= 1 in fact) such that A is not 3-good.

Proof. (leaving most of the details to the reader). Let F = f1!;2!;3!; : : :g, b1 = 1 and define bn+1 =

bn + dn where the dn’s have the following properties: For all i;di 2 F and di � di+1. Furthermore,
the set of natural numbers N can be partitioned into consecutive pairwise disjoint intervals J1;J2;J3; : : :

such that if r is odd, then for i 2 Jr, di = di+1 and ∑i2Jr 1=bi � 1, and, if r is even, then, for i 2 Jr,
di < di+1, bi > 2bi�1 and jJrj > (maxJr�1)

2. Clearly B = fb1;b2; : : :g is M-lacunary and ∑B 1=b = ∞.
Let A = fbk : k 2Sr J2rg. Then

δ (AjB)� lim
r

jJ2rj
jJ2rj+maxJ2r�1

= 1:

One can also see that A is not 3-good since ai > 2ai�1 holds.

(2.6). Theorems 4,5, and 7 notwithstanding, it seems to be difficult to generalize the notion of M-
lacunary even slightly and still prove the corresponding case of the Erdős conjecture. In this connection
let us define a lacunary sequence A to be Mk-lacunary (where k � 0) if, for all i; j; i � j, we have di �
d j + k. Clearly, the M0-lacunary sequences are just the M-lacunary sequences. For no k 6= 0 are we able
to prove that Mk-lacunary and ∑A(1=a) = ∞ imply ω-good. We can show if A is M1-or M2-lacunary with

∑A(1=a) = ∞ then A is 3-good. We prove first a lemma which may have independent interest:

Lemma 2. If A = fa1 < a2 < a3 < � � �g is any subset of N and ∑A 1=a = ∞, then, for any t > 0, there

exists an i such that di+ j � di for j = 0;1; : : : ; t. (Of course, dn = an+1�an.)

Proof. The method is familiar by now: Suppose there is a t such that, for each i, there exists j 2 [1; t]
with di < di+ j. Then we can find a sequence ( jn) such that

d1 < d1+ j1 < d1+ j1+ j2 < � � �( jn 2 [1; t]):
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It follows that

∑
A

1
a
� t

∞

∑
s=0

1
a1+( j1+���+ js)

� t
∞

∑
s=0

1
a1 +(1+2+ � � �+ s)

< ∞:

Theorem 9. Let A be M1-or M2-lacunary and ∑A(1=a) = ∞. Then A is 3-good.

Proof. By the definition of Mk-lacunary and Lemma 2 we have: for any t > 0 there is an i such that

di� e� di+ j � di; j = 0;1; : : : ; t;

where e = 1 or 2. Hence, in the sequence (di), we have arbitrarily long blocks where the di take on
only two (in case e = 1) or three (in case e = 2) values. Such long blocks must contain two consecutive
subblocks with identical composition (see Pleasants [5]). These two subblocks will determine three
terms of the sequence A in arithmetic progression.

This last result suggests a conjecture which is related to van der Waerden’s theorem on arithmetic
progressions and would immediately imply that Mk-lacunary with ∑A(1=a) = ∞ implies that A is 3-good.

Conjecture. Let xi be a sequence of positive integers with 1 � xi � K. Then there are two consecutive
intervals I;J of the same length, with ∑i2I xi = ∑ j2J x j. Equivalently, if a1 < a2 < � � � satisfy an+1�an �
K, all n, then there exist x < y < z such that x+ z = 2y and ax +az = 2ay.
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