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Abstract

The study of the structure of infinite words having bounded abelian complexity was initiated by G.

Richomme, K. Saari, and L. Q. Zamboni [11]. In this note we define bounded additive complexity for

infinite words over a finite subset of Zm
: We provide an alternative proof of one of the results of [11].

1 Introduction

Recently the study of infinite words with bounded abelian complexity was initiated by G. Richomme, K.
Saari, and L. Q. Zamboni [11]. (See also [3] and the references in [3] and [11].) In particular, it is shown
(in [11]) that if ω is an infinite word with bounded abelian complexity, then ω has abelian k-factors for
all k � 1: (All these terms are defined below.)

In this note we define bounded additive complexity, and we show in particular that if ω is an infinite
word (whose alphabet is a finite subset S of Zm for some m � 1) with bounded additive complexity,
then ω has additive k-factors for all k � 1: As we shall see, this provides an alternative proof of the
just-mentioned result concerning abelian k-factors.

We are motivated by the following question. In [6–8], and [10], it is asked whether or not there exists
an infinite word on a finite subset of Z in which there do not exist two adjacent factors with equal lengths
and equal sums. (The sum of the factor x1x2 : : :xn is x1 + x2 + � � �+ xn:) This question remains open,
although some partial results can be found in [1, 2, 6].

2 Additive complexity

2.1 Infinite words on finite subsets of Z

Definition 2.1. Let ω be an infinite word on a finite subset S of Z. For a factor B = x1x2 : : :xn of ω , ∑B

denotes the sum x1 + x2 + � � �+ xn: Let

φω(n) = f∑B : B is a factor of ω with length ng:
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The function jφω j (where jφω j(n) = jφω(n)j;n� 1) is called the additive complexity of the word ω:

If B1B2 � � �Bk is a factor of ω such that jB1j = jB2j = � � � = jBkj and ∑B1 = ∑B2 = � � � = ∑Bk; we
call B1B2 � � �Bk an additive k-power.

We say that ω has bounded additive complexity if any one (and hence all) of the three conditions in
the following proposition (Proposition 2.1) hold.

Proposition 2.1. Let ω be an infinite word on the alphabet S, where S is a finite subset of Z. Then the

following three statements are equivalent.

1. There exists M1 such that if B1B2 is a factor of ω with jB1j= jB2j; then j∑B1�∑B2j �M1:

2. There exists M2 such that if B1;B2 are factors of ω (not necessarily adjacent) with jB1j = jB2j;

then j∑B1�∑B2j �M2:

3. There exists M3 such that jφω(n)j �M3 for all n� 1.

Proof. We will show that 1, 2 and 2, 3:
Clearly 2) 1. Now assume that 1 holds, that is, if B1B2 is any factor of ω with jB1j= jB2j; it is the

case that j∑B1�∑B2j � M1: Now let B1 and B2 be factors of ω with jB1j = jB2j; and assume that B1

and B2 are non-adjacent, with B1 to the left of B2.
Thus, assume that

B1A1A2B2

is a factor of ω , where

jA1j= jA2j or jA1j= jA2j+1:

Let
C1 = B1A1;C2 = A2B2:

Then
jC1j= jC2j or jC1j= jC2j+1:

Now

∑C1�∑C2 = (∑B1 +∑A1)� (∑A2 +∑B2);

or

∑B1�∑B2 = (∑C1�∑C2)+(∑A2�∑A1):

Therefore, since A1;A2 and C1;C2 are adjacent, we have

j∑A2�∑A1j �M1 +maxS; j∑C1�∑C2j �M1 +maxS;

and
j∑B1�∑B2j � 2M1 +2maxS;

so that we can take M2 = 2M1 +2maxS: Thus 1) 2:

Next we show that 2) 3: Thus we assume there exists M2 such that whenever B1;B2 are factors of
ω (not necessarily adjacent) with jB1j= jB2j; it is the case that j∑B1�∑B2j �M2:
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Let n be given, and let ∑B1 = minφω(n): Then for any B2 with jB2j = n; we have ∑B2 = ∑B1 +

(∑B2�∑B1): Therefore ∑B2 �∑B1+M2: This means that φω(n)� [∑B1;∑B1+M2]; so that jφω(n)j �

M2 +1:

Finally, we show that 3 ) 2: We assume there exists M3 such that jφω(n)j � M3 for all n � 1.
Suppose that B1 and B2 are factors of ω such that jB1j = jB2j = n and ∑B1 = minφω(n), ∑B2 =

maxφω(n): To simplify the notation, for all a � b let ω[a;b] denote xaxa+1 : : :xb, and let us assume
that B1 = ω[1;n];B2 = ω[q+1;q+n]; where q > 1:

For each i;0� i� q; let bi denote the factor ω[i+1; i+n]: Thus B1 = b0;B2 = bq; and the factor bi+1

is obtained by shifting bi one position to the right. Clearly

∑bi+1�∑bi �maxS�minS:

Since jb0j= jb1j= � � �= jbqj= n; and jφω(n)j �M3; there can be at most M3 distinct numbers in the
sequence ∑B1 = ∑b0;∑b1; : : : ;∑bq = ∑B2: Let these numbers be

∑B1 = c1 < c2 < � � �< cr = ∑B2;

where r �M3:

Since ∑bi+1�∑bi�maxS�minS; 0� i� q; it follows that c j+1�c j �maxS�minS; 0� i� r�1;
and hence that

j∑B1�∑B2j � (M3�1)(maxS�minS):

Theorem 2.2. Let ω be an infinite word on a finite subset of Z. Assume that ω has bounded additive

complexity. Then ω contains an additive k-power for every positive integer k.

Proof. Let ω = x1x2x3 � � � be an infinite word on the finite subset S of Z, and assume that whenever
B1;B2 are factors of ω (not necessarily adjacent) with jB1j = jB2j; then j∑B1 �∑B2j � M2: (This is
from part 2 of Proposition 2.1.)

Define the function f from N to f0;1;2; : : : ;M2g by

f (n) = x1 + x2 + x3 + � � �+ xn (mod M2 +1); n� 1:

This is a finite coloring of N; by van der Waerden’s theorem, for any k there are t;s such that

f (t) = f (t + s) = f (t +2s) = � � � f (t + ks):

Setting
Bi = ω[t +(i�1)s+1; t + is]; 1� i� k;
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we have

∑B1 �∑B2 � �� � �∑Bk (mod M2 +1):

Since B1B2 � � �Bk is a factor of ω with jBij = jB jj;1 � i < j � k; we have j∑Bi�∑B jj � M2 and

∑Bi � ∑B j (mod M2 +1); hence ∑Bi = ∑B j:

Thus jB1j = jB2j = � � � = jBkj and ∑B1 = ∑B2 = � � � = ∑Bk; and ω contains the additive k-power
B1B2 � � �Bk.

2.2 Infinite words on subsets of Zm

Let us use the notation (u) j for the jth coordinate of u 2 Zm: That is, if u = (u1; : : : ;um) then (u) j = u j:

Also, juj= j(u1; : : : ;um)j denotes the vector (ju1j; : : : ; jum)j): In other words, (juj) j = j(u) jj:

For factors B1;B2 of an infinite word ω on a finite subset S of Zm, the notation j∑B1�∑B2j � M1

means that (j∑B1�∑B2j) j �M1; 1� j � m:

Now we suppose that ω is an infinite word on a finite subset S of Zm for some m� 1: The definition
of φω and the additive complexity of ω is exactly as in Definition 1.1 above. The function

φω(n) = f∑B : B is a factor of ω with length ng

is called the additive complexity of the word ω:

By working with the coordinates (B1) j;(j∑B1�∑B2j) j; we easily obtain the following results.

Proposition 2.3. Proposition 2.1 remains true when Z is replaced by Zm.

Theorem 2.4. Let ω be an infinite word on a finite subset of Zm for some m � 1. Assume that ω has

bounded additive complexity. Then ω contains an additive k-power for every positive integer k.

The following is a re-statement of Theorem 2.4, in terms of m infinite words on Z; rather than one
infinite word on Zm:

Theorem 2.5. Let m 2N be given, and let S1;S2; : : : ;Sm be finite subsets of Z: Let ω j be an infinite word

on S j with bounded additive complexity, 1 � j � m: Then for all k � 1, there exists a k-term arithmetic

progression in N; t; t + s; t +2s; : : : ; t + ks such that for all j;1� j � m;

∑ω j[t +1; t + s] = ∑ω j[t + s+1; t +2s] = � � �= ∑ω j[t +(k�1)s+1; t + ks]:

Thus ω1;ω2; � � � ;ωm have “simultaneous" additive k-powers for all k � 1:
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3 Abelian complexity

Definition 3.1. Let ω be an infinite word on a finite alphabet. Two factors of ω are called abelian

equivalent if one is a permutation of the other. If the alphabet is A = fa1;a2; : : : ;atg; and the finite word
B is a factor of ω; we write ψ(B) = (u1;u2; : : : ;ut); where ui is the number of occurrences of the letter i

in the word B;1� i� t: We call ψ(B) the Parikh vector associated with B.
Let ψω(n)= fψ(B) : B is a factor of ω; jBj= ng. The function ρab

ω ; defined by ρab
ω (n)= jψω(n)j;n�

1; is called the abelian complexity of ω .
Thus ρab

ω (n) is the largest number of factors of ω of length n, no two of which are abelian equivalent.
If there exists M such that ρab

ω (n)�M for all n� 1; then ω is said to have bounded abelian complexity.
The word B1B2 � � �Bk is called an abelian k-power if B1; B2; : : : ;Bk are pairwise abelian equivalent.

(Being abelian equivalent, they all have the same length.)
Recall that we are using the notation j(u1;u2; : : : ;ut)j �M to denote juij �M;1� i� t:

Proposition 3.1. Let ω be an infinite word on a t-element alphabet S. Then the following three state-

ments are equivalent.

1. There exists M1 such that if B1B2 is a factor of ω with jB1j= jB2j; then jψ(B1)�ψ(B2)j �M1:

2. There exists M2 such that if B1;B2 are factors of ω (not necessarily adjacent) with jB1j = jB2j;

then jψ(B1)�ψ(B2)j �M2:

3. There exists M3 such that such that ρab
ω (n)�M3 for all n� 1.

Proof. We show that 1, 2 and 2, 3:
Clearly 2) 1. Now assume that 1 holds, that is, if B1B2 is any factor of ω with jB1j= jB2j; it is the

case that jψ(B1)�ψ(B2)j � M1: Now let B1 and B2 be factors of ω with jB1j = jB2j; and assume that
B1 and B2 are non-adjacent, with B1 to the left of B2.

Thus, assume that
B1A1A2B2

is a factor of ω , where

jA1j= jA2j or jA1j= jA2j+1:

Now we proceed exactly as in the proof of 1 ) 2 in Proposition 2.1, noting that jψ(A1)�ψ(A2)j �

M1 +1:

Next we show that 2) 3: Thus we assume there exists M2 such that whenever B1;B2 are factors of
ω (not necessarily adjacent) with jB1j= jB2j; it is the case that jψ(B1)�ψ(B2)j �M2:

Let n be given, and let B1 2 ψω(n): Then for any B2 with jB2j = n; we have ψ(B2) = ψ(B1) +

(ψ(B2)�ψ(B1)): Therefore jψ(B2)j � jψ(B1)j+M2: (This inequality is component-wise, that is, (jψ(B2)j) j �

(jψ(B1)j) j +M2;1� j � t:)
Therefore there are at most 2M2�1 choices for each component of B2, and hence ρab

ω (n)� (2M2�

1)t :

Finally, we show that 3) 2: We assume there exists M3 such that ρab
ω (n)�M3 for all n� 1.
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Since jψ(xB)�ψ(By)j � 1 for all x;y 2 S, it follows that if ω has factors B1;B2 of length n where
for some j;1 � j � t;(ψ(B1)) j = p and (ψ(B2)) j = p + q, then ω has factors Cr of length n with
(ψ(Cr)) j = p+ r;0� r � q: (This is discussed in more detail in [11].) Thus jψ(B1)�ψ(B2)j �M3 im-
plies ρab

ω (n)�M3 +1: Since we are assuming ρab
ω (n)�M3;n� 1; we conclude that jψ(B1)�ψ(B2)j �

M3�1 whenever jB1j= jB2j. Hence jψ(B1)�ψ(B2)j �M3�1 whenever jB1j= jB2j:

Remark 3.1. To see that bounded sum complexity is indeed weaker than bounded abelian complexity,
consider the following example. Let σ = x1x2x3 � � � be the binary sequence constructed by Dekking [5]
which has no abelian 4th power. In σ ; replace every 1 by 12, and replace every 0 by 03, obtaining the
sequence τ: If τ had an abelian 4th power ABCD, then the number of 2s in each of A;B;C;D are equal,
and similarly for the number of 3s. But then dropping the 2s and 3s from ABCD would give an abelian
4th power in σ , a contradiction. Hence τ does not have bounded abelian complexity. Now let a factor
B of τ be given. By shifting B to the right or left, we see, by examining cases, that if jBj is even then

∑B = 3
2 jBj+ s; where s 2 f�1;0;1g: If jBj is odd, then ∑B = 3

2 (jBj � 1) + s; where s 2 f0;1;2;3g:
Hence jφτ(n)j � 4 for all n� 1; and τ does have bounded sum complexity.

Definition 3.2. Let S = fa1;a2; : : : ;amg be a subset of Z, and let ω = x1x2x3 � � � be an infinite word on
the alphabet S. For each j;1� j�m; let a0

j be the element of Zm which has a j in the in the jth coordinate
and 00s elsewhere. Let ω 0 = x0

1x0
2x0

3 � � � be the word on the subset S0 of Zm;S0 = fa0
1;a

0
2; : : : ;a

0
mg; obtained

from ω by replacing each a j by a0
j; 1� j � m: It is convenient to visualize each a0

j as a column vector,
rather than as a row vector.

Theorem 3.2. Referring to Definition 2.2, consider the following statements concerning ω and ω 0:

1. ω has bounded abelian complexity.

2. ω 0 has bounded abelian complexity.

3. ω 0 has bounded additive complexity.

4. ω 0 contains an additive k-power for all k � 1:
5. ω 0 contains an abelian k-power or all k � 1,

6. ω contains an abelian k-power for all k � 1

Then 1, 2, 3, 4, 5, 6; 3) 4; and 4; 3

Proof. Clearly 1, 2 and 5, 6:

The linear independence of S0 over Z implies that 2, 3 and 4, 5:

The implication 3) 4 is a special case of the second part of Theorem 2.4.
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To see that 4; 3, note that if 4) 3 then 6) 1, which is shown to be false by the Champernowne
word [4]

C = 01101110010111011110001001 � � � ;

obtained by concatenating the binary representations of 0;1;2; : : : . This word has arbitrarily long strings
of 1’s (and 0’s), hence satisfies condition 6; but C does not satisfy condition 1. (Clearly for the sequence
C, ρab

C (n) = n+1 for all n� 1:)

Corollary. Every infinite word with bounded abelian complexity has an abelian k-power for every k.

4 A more general statement

One can cast the arguments above into a more general form, and prove (we omit the details) the following
statement.

Theorem 4.1. Let S be a finite set, and let S+ denote the free semigroup on S. For t 2 N, let

µ : S+! Z
t

be a morphism, that is, for all B1;B2 2 S+;

µ(B1B2) = µ(B1)+µ(B2):

Let ω be an infinite word on S. Assume further that there exists M 2 N such that

jB1j= jB2j ) jjµ(B1)�µ(B2)jj �M;

where jj � jj denotes Euclidean distance in Zt : Then for all k � 1; ω contains a k-power modulo µ; that

is, ω has a factor B1B2 � � �Bk with

jB1j= jB2j= � � �= jBkj; µ(B1) = µ(B2) = � � �= µ(Bk):

Thus taking S to be a finite subset of Zm; and µ(B) = ∑B 2 Zm; we obtain Theorem 2.4.
Taking S to be a finite set and µ(B) = ψ(B) 2 ZjSj; we obtain the Corollary to Theorem 3.2.

Acknowledgment. The authors would like to acknowledge the IRMACS Centre at Simon Fraser Uni-
versity for its support.
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