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Abstract

We give two short proofs of the well-known fact that every finitely generated idempotent semi-

group is finite.
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1 Introduction

There are at least 6 published proofs (see [1–6]) of the fact that every idempotent semigroup (i.e. semi-
group in which x2 = x for every element x) is locally finite (every finitely generated idempotent semi-
group is finite). Usually this fact is proved as a corollary to more general results. In this note we give
two additional proofs which are shorter than previous proofs and which are, we believe, of independent
interest. The first proof, adapted from [4], gives some standard structure theory along the way. (In par-
ticular, it shows that every idempotent semigroup is a semilattice of rectangular idempotent semigroups.)
The second proof is short and self-contained, and shows directly that idempotent semigroups are locally
finite.

2 The First Proof

Lemma 2.1. Let S be an idempotent semigroup, and letT denote the collection of all non-empty subsets

T of S such that xyz= xz for all x;y;z2 T . Partially orderT by inclusion. Then every T 2T is contained

in a maximal element T 0 of T . Furthermore, each maximal element of T is a subsemigroup of S.

Proof. Given T , Zorn’s lemma shows that T 0 exists, and if x;y 2 T 0, then T [fxyg 2T , so xy 2 T 0.

Lemma 2.2. The set of maximal elements of T is a partition of S.

Proof. Since fxg satisfies xyz= xz, x belongs to a maximal element T 2T , by Lemma 2.1, so
S
T = S.

To show that the maximal elements of T are pairwise disjoint, suppose that T1;T2 are maximal with
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e 2 T1\T2. Then for all x;y 2 T1[T2, as a first step

e(xy)e = (eye)(xy)(exe) = e(yexyex)e = e(yex)e = (eye)(exe) = ee = e

If x;y;z 2 T1[T2, then using e(xy)e = e,

xyz = (xex)(yeey)(zez) = x(exye)(eyze)z = xeez = x(exze)z = (xex)(zez) = xz

Hence by the maximality of T1;T2 we have T1 = T1[T2 = T2.

Let the equivalence relation on S corresponding to the partition in Lemma 2.2 be denoted by �, and
let the equivalence class containing an element x of S be denoted by Tx. Thus for x;y 2 S, Tx = Ty , x�

y, [both x and y belong to some maximal element of T ].

Lemma 2.3. For all x;y 2 S, Tx = Ty , [xyx = x and yxy = y].

Proof. One direction is trivial. Suppose now that xyx = x and yxy = y. Then the set fx;yg satisfies the
identity xyz = xz, so by Lemma 2.1 can be extended to a maximal element of T .

Lemma 2.3 shows that Tx = Ty , SxS[fxg= SyS[fyg, so that the sets Tx are the J-classes of S.

Lemma 2.4. For all x;y 2 S, xy� yx. Furthermore, � is a congruence on S, that is, for all x;y;x0;y0 2 S,

if x� x0 and y� y0 then xy� x0y0.

Proof. Clearly (xy)(yx)(xy) = xy and (yx)(xy)(yx) = yx, hence by Lemma 2.3, xy � yx. Now assume
that x� x0 and y� y0. Then

xy = (xx0x)(yy0y)� (x0xx0)(y0yy0) = x0y0

Let Q(S) = S= �. The elements of Q(S) are the sets Tx, x 2 S, and the multiplication is defined by
TxTy = Txy. In the standard terminology, Lemma 2.3 shows that each Tx is a rectangular idempotent semi-
group (xyx = x for all x;y), and Lemma 2.4 shows that Q(S) is a semilattice (commutative idempotent
subgroup). (As remarked by McLean [6], every rectangular idempotent semigroup is “anticommutative”
in the sense that xy= yx) x= xyx= yxy= y. Conversely, every anticommutative idempotent semigroup
is rectangular: x � xyx = xyx � x) x = xyx.)

Let S be generated by g1;g2; : : : ;gn, and let x 2 S. The content of x is the set C(x) = fgi : x =

agib for some a;b 2 Sg. The reduced form of x is π(x) = gi1gi2 � � �gik , where C(x) = fgi1 ;gi2 ; � � � ;gikg

and i1 < i2 < � � �< ik. (Of course these definitions depend on the set of generators.)

Lemma 2.5. For all x 2 S, x� π(x).

Proof. This follows immediately from 2.4.

According to Lemma 2.5, Q(S) is isomorphic to a subsemigroup of the semigroup of all non-empty
subsets of f1;2; : : : ;ng, with set union as the operation.
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Theorem 2.1. For all n� 1, every idempotent semigroup S on n generators is finite.

Proof. Let S have generators g1;g2; : : : ;gn. The proof has just two ingredients. The first is the fact
that if C(x) =C(z) = fg1;g2; : : : ;gng, then for any y 2 S, C(x) =C(yz) =C(z), so that x;yz;z 2 Tx and
xyz = x(yz)z = xz. The second ingredient is a natural definition of the length of an element of S. The
length of an element of S is defined below, and the proof of the theorem is then identical with the proof
below.

3 The Second Proof

Let S be an idempotent semigroup generated by g1;g2; : : : ;gn. Let us call an element x 2 S complete if
for each i, 1 � i � k, there are elements ai and bi of S such that x = aigibi. For example, x = g1g2 � � �gn

is complete. For each x 2 S, the length of x, denoted by jxj, is the minimum k such that x = x1x2 � � �xk,
where xi 2 fg1;g2; : : : ;gng, 1� i� k. Note that jxj � 1 for all x 2 S.

Lemma 3.1. If w 2 S and w is complete, then w = wxw for all x 2 S.

Proof. Let w 2 S be complete. We show that w = wxw for all x 2 S by induction on jxj. If jxj = 1 then
w = axb since w is complete, and

w = (ax)b = (axax)b

= a(xaxb) = a(xaxbxaxb)

= (axax)bxaxb = (ax)bxaxb

= (axb)x(axb) = wxw

For the induction step, let jxj> 1 and assume that w = wyw for all y 2 S with jyj< jxj. Let x = yz, where
jyj< jxj and jzj< jxj. Then w = wyw and w = wzw, so

w = ww = (wzw)wyw) = wzwyw

= w(zwy)w = w(zwyzwy)w

= (wzw)yz(wyw) = wyzw = wxw

Lemma 3.2. If x;y;z 2 Sn, and x;z are complete, then xyz = xz.

Proof. Using Lemma 3.1, xyz = xy(zxz) = (xyzx)z = xz.

Theorem 3.1. For each n� 1, every idempotent semigroup S with n generators is finite.

Proof. We will show by induction on n that for each n � 1, there is a finite upper bound tn for the
largest possible length of an element of any idempotent semigroup with n generators. Clearly t1 = 1 and
t2 = 3. Let n� 3 and assume that tn�1 exists. Suppose that some element w of an idempotent semigroup
S with n generators has length jwj > 2(tn�1 + 1). Write w = xyz, where jxj = jzj = tn�1 + 1. By the
induction hypothesis, x and z must be complete, i.e. each of the n generators of S occurs in each of x and
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z. By Lemma 3.2, w = xyz = xz, so jwj � jxj+ jzj = 2(tn+1 + 1), a contradiction. Hence tn exists and
tn � 2(tn�1+1).
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