
On the Density of Sets Containing No k-Element

Arithmetic Progression of a Certain Kind

Brian Alspach, T. C. Brown, and Pavol Hell

Citation data: B. Alspach, T.C. Brown, and P. Hell, On the density of sets containing no k-element arithmetic

progressions of a certain kind, J. London Math. Soc. (2) 13 (1976), 226–234.

1 Introduction

A theorem now known as Sperner’s Lemma [5] states that a largest collection of subsets of an n-element
set such that no subset contains another is obtained by taking the collection of all the subsets with cardinal
bn=2c. (We denote by bxc, resp. dxe, the largest integer less than or equal to x, resp. the smallest integer
greater than or equal to x.) In other words, the density of a largest antichain in the set of all subsets of an
n-element set is

2�n
�

n
bn=2c

�
:

The generalization of this problem which is considered here was mentioned to one of the authors by R.
L. Graham. An antichain in an n-element set can be viewed as a collection of sequences of length n on
the symbols 0;1 such that no two sequences occur which are, in some order, the rows of a 2�n matrix
in which each column is either constant of is

0
1
:

We now enlarge the set of symbols as follows: Let A(n;k) denote the set of all sequences of length n of
the k symbols 0;1;2 : : : ;k�1. A subset K of A(n;k) is called a diagonal of A(n;k), or simply a diagonal

if n and k are clear from the context, if jDj = k and the elements of D are the rows (in some order) of a
k�n matrix in which each column is either constant or is

0
1
...

k�1

:

Let us call a set B � A(n;k) a good subset of A(n;k) if B contains no diagonal of A(n;k), and let d(n;k)

be the density in A(n;k) of a largest good subset of A(n;k). That is,

d(n;k) = k�n maxfjBj : B is a good subset of A(n;k)g:
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Note that Sperner’s Lemma says

d(n;2) = 2�n
�

n
bn=2c

�
;

therefore d(n;2)! 0 as n ! ∞, by Stirling’s Formula.
Let M be the infinite matrix whose entry in the n-th row and the k-th column is d(n;k). The first

column (k = 1) of M consists of zeros only; Sperner’s Lemma describes the second column. The most
important question related to M appears to be whether or not all the column limits are zero, i.e., whether
d(n;k)! 0 as n ! ∞ (the answer is yes for k = 1;2). This is the question posed by Graham. If, in fact,
d(n;k)! 0 as n ! ∞, then any set of positive integers of positive upper asymptotic density contains an
arithmetic progression (of a certain type) with k terms. This may be seen by regarding the elements of
A(n;k) as k-ary representations of integers. A diagonal of A(n;k) is then an arithmetic progression of a
particular kind: the first term is ∑aiki and the common difference is ∑εiki where, for each i;0� ai � k�1
and ai = 0 if εi = 1. Szemerédi proved [6] that every set of integers of positive upper asymptotic density
contains arbitrarily long arithmetic progressions. It is shown below that the sequence of the column
limits of the matrix M is increasing, and has a limit. If this limit is 0, then all column limits are zero, and
Szemerédi’s theorem would follow. On the other had, it is shown in [1], that the limit is either 0 or 1. The
following result, which is weaker than the convergence to zero of each column, is known [3, 4]: given
positive integers r;k there exists an integer n = n(k;r) such that if the elements of A(n;k) are partitioned
into r classes, then at least one of these classes contains a diagonal.

This paper is concerned with the behavior of M along paths other than columns, i.e., the behavior of
sequences fd(φ(k);k)g where φ is a function of the set of positive integers into itself. In particular, we
prove that the limit along any path in M that lies entirely above a non-vertical line (i.e., φ(k) � mk for
all k) is 1.

2 Elementary results

If a diagonal D of A(n;k) is written as a k�n matrix with constant and increasing columns, the latter are
called running columns. For example, D = f012010;212210;112110g is a diagonal in A(6;3) since the
elements of D are the rows of the 3�6 matrix

0 1 2 0 1 0
1 1 2 1 1 0
2 1 2 2 1 0

(here the first and fourth columns are running and the others are constant columns). We shall often
identify a diagonal with its corresponding matrix, and shall agree to list the elements of a diagonal in the
order they appear as rows of the matrix, e.g., D = f012010;112110;212210g.

The limit along any row of M is 1 (i.e., d(n;k)! 1 as k ! ∞ for a fixed n), as can be seen from the
inequalities

(1�1=k)n � d(n;k)� 1�1=k:

To prove the first of these inequalities we observe that A(n;k�1) is a good subset of A(n;k); the second
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one follows from the fact that there exist kn�1 pairwise disjoint diagonals

D = fa1a2 � � �an�10;a1a2 � � �an�11; : : : ;a1a2 � � �an�1(k�1)g

(one for each a1a2 � � �an�1 2 A(n�1;k)), and so any good subset B of A(n;k) can have at most kn�kn�1

elements.
It follows from the above remarks that the limit of the row limits exists and is equal to 1. We proceed

to examine the existence of the column limits and of their limit.

Proposition 1. In the matrix M, each row is an increasing sequence, and each column a decreasing

sequence.

Proof. To show that the n-th row of M is increasing, let B be a good subset of A(n;k) of maximum
cardinal. In order to obtain d(n;k)� d(n;k+1) it is sufficient to construct a good subset C of A(n;k+1)
such that the central inequality of the following line holds:

d(n;k) = k�njBj � (k+1)�njCj � d(n;k+1):

That is, we require a good subset C of A(n;k+1) satisfying

(1+1=k)njBj � jCj:

To achieve this we shall proceed by induction. The set C0 = B has the following properties ( j = 0):
(1) C j is a good subset of A(n;k+1).
(2) (1+1=k) jjBj � jC jj.
(3) If the new symbol k (the old symbols are 0;1; : : : ;k� 1) appears in the i-th entry of a sequence

in C j, then i � j. Furthermore, for each i � j there is a unique symbol ui difference from k, such that if
a1a2 � � �ai�1kai+1 � � �an 2C j then a1a2 � � �ai�1uiai+1 � � �an 2C j.

(4) If a1a2 � � �an 2C j and no ai = k, then a1a2 � � �an 2 B.
If C j, 0� j < n satisfies (1)–(4), we construct C j+1 as follows: In the ( j+1)-st entry of the sequences

of C j some symbol, say a, occurs at least (1=k)jC jj times. Let P denote the set of all the sequences in C j

that have the symbol a as the ( j+1)-st entry; thus jPj � (1=k)jC jj. Let Q denote the set obtained from
P by replacing the symbol a in the ( j+1)-st entry of each sequence in P by the new symbol k; put

C j+1 =C j [Q:

Obviously, C j+1 satisfies (3) and (4); (2) holds as well, since

(1+1=k) j+1jBj � (1+1=k)jC jj � jC j+1j:

It remains to show that C j+1 is a good subset of A(n;k+1). Let D �C j+1 be a diagonal of A(n;k+1).
We perform the following operation on the i-th column of the diagonal D, for each i, 1 � i � j+ 1. If
the i-th column is running, or if it is a constant column where the constant is different from k, we do
nothing. If the i-th column is constantly equal to k, then we replace it by a column constantly equal to
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the symbol ui, where ui is the symbol guaranteed by condition (3) (for C j+1). Thus the new diagonal D0

so obtained, after all the first j+1 columns have been operated on, is still contained in C j+1. Moreover,
the first k members of D0 are a diagonal of A(n;k) and by (4) (for C j+1) are contained in B, contrary to
assumption. Hence (1) is also satisfied for C j+1, and the induction step is completed. We thus obtain a
good subset C =Cn of A(n;k+1) with

(1+1=k)njBj � jCj:

Now to show that the k-th column of M is decreasing, let B be a maximum cardinal good subset of
A(n+ 1;k), and let P be a subset of B such that jPj � (1=k)jBj and each sequence of P has the same
(n+ 1)-st entry a. Let Q be the subset of A(n;k) obtained from P by deleting the last symbol (a) from
each sequence of P. Then clearly any diagonal of A(n;k) in Q gives rise (by reintroducing the last symbol
a) to a diagonal of A(n+1;k) in P � B. Hence, Q is a good subset of A(n;k), and

d(n+1;k) = k�(n+1)jBj � k�njPj= k�njQj � d(n;k):

Corollary. Each column of the matrix M is a convergent sequence, and the limit of the column limits

exists.

Proof. By Proposition 1, each column of M is a monotone and bounded sequence; furthermore, the
sequence of column limits is also monotone and bounded.

We present a useful criterion for a subset of A(n;k) to be good. In the following d(i) denotes
d(i)1 d(i)2 � � �d(i)n�1 and d(i):x = d(i)1 d(i)2 � � �d(i)n�1x.

Proposition 2. Let B � A(n;k) and let

Bi = fa1a2 � � �an�1 2 A(n�1;k) : a1a2 � � �an�1i 2 Bg

for i = 0;1; : : : ;k� 1. Then B is a good subset of A(n;k) if and only if the following three conditions

hold:

(i) Each Bi is a good subset of A(n�1;k).
(ii)
Tk�1

i=0 Bi = /0.

(iii) If D = fd(0);d(1); : : : ;d(k�1)g is a diagonal of A(n�1;k), then, for some i, d(i) =2 Bi.

Proof. The set B is a good subset of A(n;k) if and only if it contains no diagonal of A(n;k) in which the
last column is constant (condition (i)), or the last column is the only running column (condition (ii)), or
the last column and at least one other column are running (condition (iii) which states that

D0 = fd(0):0;d(1):1; : : : ;d(k�1):(k�1)g 6� B):

The condition (ii) obtains a special meaning when B is a good subset of A(n;k) with the maximuum
number kn � kn�1 of elements. Indeed, (ii) states that for each of the kn�1 sequences a1a2 � � �an�1 in
A(n�1;k) there exists a symbol i such that

a1a2 � � �an�1i =2 B:
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If B contains all but kn�1 elements of A(n;k) then the above i must be unique; let us denote it by
c(a1a2 � � �an�1), that is, for each sequence s2 A(n�1;k) c(s) denotes that unique symbol i for which s =2
Bi. We can view the function c as an (n�1)-dimensional matrix with side k and entries 0;1;2; : : : ;k�1.
Conversely, to any such matrix this correspondence assigns a subset B of A(n;k) with kn � kn�1 ele-
ments.

Corollary 1. The maximum value

d(n;k) = 1�1=k

is attained if and only if there exists an (n�1)-dimensional matrix with side k and entries 0;1;2; : : : ;k�1,

such that for any diagonal D = fd(0);d(1); : : : ;d(k�1)g of A(n�1;k) the values

c(d(0));c(d(1)); : : : ;c(d(k�1))

for a permutation of 0;1; : : : ;k�1 in which at least one

i = c(d(i))

Proof. The maximum value is attained if and only if a good subset B of A(n;k) with kn � kn�1 ele-
ments can be found. Using the preceding remark we note that the condition (i) says that each symbol
0;1; : : : ;k�1 occurs among c(d(0));c(d(1)); : : : ;c(d(k�1)), and the condition (iii) says that i = c(d(i)) for
some i.

As an application we now determine the values in the first three rows of the matrix M.

Corollary 2. If n = 1;2;3, then

d(n;k) = 1�1=k

for all k, with exactly one exception, d(3;2) = 3=8.

Proof. For n = 1, B = A(1;k) n f0g is a good subset of A(1;k) with k1 � k0 = k� 1 elements; in fact,
c = 0 can be regarded as a 0-dimensional matrix satisfying Corollary 1. For n = 2, such a matrix is
obtained by putting c(i) = i for i = 0;1; : : : ;k�1. For n = 3 the multiplication table of any idempotent
quasigroup over 0;1; : : : ;k�1 satisfies our requirements. Such quasigroups exist, e.g. [2], for k � 3. Of
course, the case k = 2 is an exception, and the value of d(3;2) follows from Sperner’s Lemma.

Corollary 3. d(4;3)< 1�1=3 and d(4;4)< 1�1=4.

We omit the proofs of these inequalities; they are deduced rather routinely from Corollary 1. Their
interest lies mainly in comparison with Corollary 2 and the Corollary of Proposition 3.

Proposition 3. If gcd(a;k) = 1 for all a = 1;2; : : : ;n�1, then d(n;k) = 1�1=k.

Proof. Let
B = A(n;k)nfa1a2 � � �an : a1 +a2 + � � �+an � 0 (mod k)g

we add the symbols as ordinary integers). Then jBj = kn � kn�1, as for each a1a2 � � �an�1 2 A(n� 1;k)
there is exactly one an such that a1+a2+ � � �+an � 0 (mod k). It remains to show that B is a good subset
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of A(n;k). Let D be a diagonal of A(n;k) having exactly a running columns; let b denote the sum of the
n�a symbols of the constant columns of D. Then the sum of the symbols in the x-th row of D (the rows
of D are numbered from 0 to k�1) is ax+b. The congruence

ax+b � 0 (mod k)

has a solution x = 0 when a = n (i.e., b = 0), and a solution exists for a = 1;2; : : : ;n�1, because a;k are
relatively prime. Hence B contains no diagonal of A(n;k).

Corollary. For all primes p,

d(n; p) = 1�1=p

if n � p. In particular,

d(p; p) = 1�1=p

fo all primes p.

3 Main Results

Theorem 1. For all k � 2 and all m, d(mk;m)> (1�2=k)2m. If p is prime, then d(mp; p)� (1�1=p)m

for all m.

Proof. Let k � 2 and m be given, and let p be the largest prime less than or equal to k. According to
Bertrand’s Postulate (stating that for any positive integer n there is a prime q such that n < q � 2n) we
have

k < 2p:

Consider the number

t = jfa1a2 � � �ap 2 A(p;k) : a1 +a2 + � � �+ap � 0 (mod p)gj

and let θ = t=kp�1. For each a1a2 � � �ap�1 2 A(p�1;k) there is at least one but (as k < 2p) not more than
two symbols ap with a1 +a2 + � � �+ap � 0 (mod p). Therefore, 1 � θ < 2 and when k itself is a prime,
then p = k and θ = 1. For convenience of notation let s = dmk=pe so that mk = (s� 1)p+ r, where
1 � r � p, and now think of sequences of length mk on the symbols 0;1; : : : ;k� 1 as being covered by
s�1 “blocks" of length p and a fixed block of length r. To be specific, for each sequence a = a1a2 � � �amk

we define the blocks
B1(a) = a1a2 � � �ap; B2(a) = ap+1ap+2 � � �a2p; � � �

Bs�1(a) = a(s�2)p+1a(s�2)p+2 � � �a(s�1)p;

and
Bs(a) = a(s�1)p+1a(s�1)p+2 � � �amk:

Note that the first s�1 blocks are just the successive blocks of length p from left to right, while the s-th
block is the rightmost block of length r. We shall construct a good subset of A(mk;k) with cardinal at
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least
kmk(1�2=k)2m:

To this end, for each j = 1;2; : : : ;s, let S j(a) denote the sum of all the sumbols in B j(a), and

N j = fa 2 A(mk;k) : S j(a)� 0 (mod p)g:

Finally, let

B = A(mk;k)n
s[

j=1

N j:

We shall first calculate jBj, then show that B contains no diagonal. By the definition of θ ,

jN jj= θkp�1kmk�p = θkmk�1 for 1 � j � s�1:

Similarly, for N j1 j2��� jn = N j1 \N j2 \�� �\N jn , 1 � n � s�1 and

1 � j1 < j2 < � � �< jn � s�1;

we have
jN j1 j2��� jn j= θ

nkmk�n:

Let

A =
s�1[

j=1

N j:

By inclusion-exclusion we obtain

jAj= ∑
1�i1�s�1

jNi1 j� ∑
1�i1<i2�s�1

jNi1i2 j+ � � �

=
s�1

∑
n=1

(�1)n+1
∑

1�i1<���<in�s�1
jNi1i2���in j

=�
s�1

∑
n=1

(�1)n
�

s�1
n

�
θ

nkmk�n

= kmk � kmk(1�θ=k)s�1:

Now �����
s[

j=1

N j

�����= jA[Nsj= jAj+ jNsj� jA\Nsj:

Since
jNsj � 2kr�1

and
jA\Nsj � jAj:k�1;
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this gives

�����
s[

j=1

N j

������ kmk(1� (1�θ=k)s�1)(1�1=k)+2kr�1

� kmk(1� (1�θ=k)s�1)(1�1=k)+2kk�1:

Thus
jBj � kmk

�
(1�θ=k)s�1:(1�1=k)+

�
1
k
� 2

kmk�k+1

��
:

If m > 1,

jBj � kmk[(1�θ=k)s�1(1�1=k)]> kmk(1�2=k)s

� kmk(1�2=k)2m;

since s = dmk=pe � 2m. Note that if k is prime, then θ = 1 and s = m, so for m > 1 and k prime we get
jBj � kmk(1�1=p)m.

Now if m = 1 we have
jBj � kmk[(1�θ=k)s�1:(1�1=k)�1=k];

where s = 1 if k is prime, and s = 2 if k is not prime. If k is prime then d(k;k) = 1� 1=k as we have
shown earlier in the paper.

If k is not prime then s = 2 and

jBj> kmk[(1�2=k)(1�1=k)�1=k]> nmk(1�2=k)2m:

To show that B is a good subset of A(mk;k) we assume that a diagonal D of A(mk;k) is contained in
B, and that some running column of D is in the block B j. Now we proceed in analogy to the proof of
Proposition 3: If D has a running columns in the block B j, and if b is the sum of the symbols of the
constant columns in the block B j, then 1 � a � p and the congruence

ax+b � 0 (mod p)

has a solution, 0 � x � p�1 � k�1. In other words, the x-th row of D belongs to N j and consequently
is not in B.

Thus, B is a good subset of A(mk;k).

Note that the Theorem tells us d(mk;k)! 1 as k ! ∞ and the case m = 1 deals with the values (and
their limit) on the main diagonal of M.

Corollary. If φ is any function of the set of positive integers into itself such that the sequence fφ(k)=kg
is bounded by a constant, then

d(φ(k);k)! 1 as k ! ∞;

hence the limit of the entries of M along any path φ that lies above a non-vertical line is 1.
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Proof. If φ(k)� mk for all k, then d(φ(k);k)� d(mk;k) by Proposition 1, hence

d(φ(k);k)! 1 as k ! ∞:

4 Conclusions

It should be remarked that the principal interest of Theorem 1 is in allowing us to show that the limits
of M along all non-vertical lines are equal to 1. It should not be viewed as a significant estimate of
d(n;k) for a fixed k, that is, for the column convergence in m. In fact, when k = 3, Theorem 1 yields
d(3m;3)� (2=3)m, while by Proposition 2, d(3m;3)� d(3m;2)� K:1=

p
m where K is a fixed constant.

For small values of n = 3m we obtained the following lower bounds for d(3m;3) as compared to the
values obtained from Theorem 1 and Proposition 2.
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n = 3m 9 27 45 63 81 99 117 135 153
d(n;3)� 0.576 0.448 0.404 0.379 0.362 0.348 0.337 0.327 0.319
Prop. 2 0.246 0.149 0.117 0.099 0.088 0.080 0.073 0.068 0.064
Theorem 1 0.296 0.026 0.002 – – – – – 10�9

The above lower bounds for d(n;3) were obtained as follows: If s 2 A(n;3), we denote by xs;ys;zs

the number of the various symbols (that is, 0,1,2) appearing in s, oredered so that xs � ys � zs. Let B be
the set of all sequences s 2 A(n;3) which satisfy

(i) xs < ys < zs,
(ii) zs� ys = a0:30 +∑

l
i=1 ai:3i where a0 2 f1;2g and ai 2 f0;2g for i = 1;2; : : : ; l with al 6= 0.

(iii) ys� xs is even or ys� xs � 3t .
Then B is a good subset of A(n;3) and it yields the above values.
Our results make the questions asked by Graham even more interesting and, in addition, they raise

further questions. For example, we proved that in any row of M the maximum value 1�1=k is attained
for infinitely many k’s. Is it true that d(n;k) = 1�1=k for all sufficiently large k? Is it true that d(n;k) =

1�1=k implies d(n;k+1) = 1�1=(k+1)?
We wish to thank the referee for his helpful suggestions.
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