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Abstract

For given n;k, the minimum cardinal of any subset B of [1;n] which meets all of the k-term arith-

metic progressions contained in [1;n] is denoted by f (n;k). We show, answering questions raised

by Professor P. Erdős, that f (n;nε ) <C � n1�ε for some constant C (where C depends on ε) and that

f (n; logn) = o(n). We also discuss the behavior of f (p2; p), where p is a prime, and we give a simple

lower bound for the function associated with Szemerédi’s theorem.

1 Introduction

Let n;k be positive integers. We define f (n;k) to be the minimum cardinal of any subset B of [1;n] which
meets all of the k-term arithmetic progressions contained in [1;n]. For example, f (9;3) = 4, since the
set B = f2;5;6;7g meets every 3-term arithmetic progression contained in [1;9], and no smaller subset
B of [1;9] has this property. Professor Erdős [2] has asked whether f (n;nε)�C �n1�ε for some constant
C =C(ε), and whether f (n; logn) = o(n). We answer these questions below, in the affirmative. (Here we
are considering [nε ]-term arithmetic progressions and [logn]-term arithmetic progressions, respectively.)

Note that [n=k] � f (n;k) for all n and k, since [1;n] contains [n;k] pairwise disjoint blocks of k

consecutive integers.
If we regard k as a constant, then Szemerédi’s theorem [3] gives a definitive statement about the

behavior of f (n;k) for large n, namely that f (n;k) = n�o(n). However, if k(n) is a function of n which
increases sufficiently rapidly with n, then it can happen that

[n=k(n)]� f (n;k(n))�Cn=k(n) for all n;

where C is a constant.
We will show, for example, that for any fixed ε , 0 < ε < 1,

n1�ε � f (n;nε)� (12=ε) �n1�ε ; for all n:

On the other hand, it is not hard to constuct (using Szemerédi’s theorem) a function k(n) which goes to
infinity with n but which increases so slowly that (1=n) � f (n;k(n)) approaches 1 as n approaches infinity.
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(Define n2 < n3 < � � � by setting n2 = 1 and choosing nk so that f (n;k) > (1� 1=k) � n for all n > nk.
Then , for each k � 2, set k(n) = k for nk � n < nk+1.)

We will show that f (n; logn) = o(n), but we do not know if f (n; logn) = O(n= logn). The most
slowly growing functions k(n) for which we can show f (n;k(n)) = o(n) are the functions k(n) =

(logn)=(log logn)ε , for ε < 1.
We also discuss the behavior of f (p2; p) where p is a prime, and we give a lower bound for the

function, analogous to the van der Waerden numbers, associated with the “finite form" of Szemerédi’s
theorem.

2 Asymptotic results

Lemma. If p is prime, p� 3, t � 0, and pt � n < pt+1, then

f (n; p)� 3tn=p:

Proof. First we consider the case pt � n < pt+1� pt , where t � 1. (The case t = 0 is trivial.) For each
j, 0� j � t�1, let

B j = fx 2 [1;n] : x� i (mod p j+1);1� i� p jg:

Now let a+ d p jx, 0 � x � p� 1, (d; p) = 1, be a p-term arithmetic progression contained in [1;n].
Then j � t�1, since otherwise the largest term of the progression, a+d p j(p�1), will fall outside the
interval [1;n].

We will show that this progression meets the set B j. Choose i, 1 � i � p j, so that a � i (mod p j),
say a� i = sp j. Next choose x0, 0 � x0 � p�1, so that s+dx0 � 0 (mod p). Then a+d p jx0 � i (mod
p j+1), which means that a+d p jx0 is in B j.

We now know that B0[B1[�� �[Bt�1 meets every p-term arithemtic progression contained in [1;n].
From

jB jj � p j([n=p j+1]+1)� (n=p)+ p j � 2n=p;

we get
f (n; p)� jB0j+ jB1j+ � � �+ jBt�1j � 2tn=p:

Note that for the special case n = pt , we have jB jj= n=p = pt�1, so that

f (pt ; p)� t pt�1:

The remaining case is pt+1� pt � n < pt+1 (t � 1). Here, we use the preceding remark to get

f (n; p)� f (pt+1; p)� (t +1)pt � 2t pt � 3(1� (1=p))t pt � 3tn=p:

Theorem 1. Let k(n) be any function. Then, whenever k(n)� 4, we have

f (n;k(n))�
12n logn

k(n) logk(n)
:
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Proof. For k(n)� 4, there is a prime p and a non-negative integer t such that, using Bertrand’s postulate,

3� p� k(n)� 2p and pt � n < pt+1:

By the lemma, (n;k(n)) � f (n; p) � 3tn=p. Now t � (logn)=(log p), 1=p � 2=k(n) and 1= log p �

1=(logk(n)� log2)� 2= logk(n). The result follows.

Corollary 1. If logn = o(k(n) logk(n)), then f (n;k(n)) = o(n).

Applications. (a) Let k(n) = nε , 0< ε < 1. Then f (n;nε)� (12=ε)n1�ε , for all n (Note (12=ε)n1�ε � n

implies logn� 4.)
(b) When k(n)= logn, f (n; logn)� 12n= log logn, for all n. (Note 12= log logn� n implies log logn�

4.)
(c) Letting k(n) = (logn)=(log loglogn) or the smaller function (logn)=(log logn)ε for 0 < ε < 1,

we get functions k(n) = o(logn) such that f (n;k(n)) = o(n). Note the corollary does not apply to
k(n) = (logn)=(log logn).

3 Other results

Theorem 2. For every odd prime p,

f (p2; p)� 2p�2:

For every constant C,

p+C � f (p2; p)

for infinitely many primes p.

Proof. For an odd prime p, let

B = fkp : 1� k � p�2g[ [p2� p�1; p2�2]:

Then jBj= 2p�2 and B meets every p-term arithmetic progression in [1; p2]. Indeed, there is only one
such progression with common difference p+1 and it contains the element p2� p�1. Every progression
with common difference p meets the interval p2� p�1; p2�2. Finally, every progression of common
difference less than p must contain an element congruent to 0 mod p. If this element happens to be p2 or
p2� p, then the given progression meets the interval [p2� p�1; p2�2] since p� 3. Otherwise it meets
the set fkp : 1� k � p�2g. This proves the first assertion.

To prove the second assertion, let C be a fixed positive integer. We suppose that for all large primes p

there is a set A� [1; p2] such that jAj � p+C, and A meets every p-term arithmetic progression in [1; p2].
Consider the blocks Bi = [ip+1;(i+1)p] for i = 0;1; : : : ; p�1. Each Bi contains at least one element of
A. Also, each residue mod p is congruent to at least one member of A. Call a block Bi “good" if Bi\A is a
singleton fag and the residue of a mod p is unique (i.e., for all a0 2A�fag, a 6� a0 mod p). An easy count
shows that the number of good blocks is not less that p� 3C and so there must be a consecutive string
of good blocks, Bu+1;Bu+2; : : : ;Bu+t of length t � (p�3C)=(3C+1). Let M = 2(3C+1) and consider
the primes p � �1 mod (M + 1)!. Note that t � M + 1 (for p sufficiently large). Let Bu+i \A = faig
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and denote the t� 1 “jumps" by ji = ai+1� ai. We claim that each ji is less than p�M. Write j = ji.
If j � p+ 1, then there are p consecutive integers which do not meet A. If j = p, then ai and ai+1 are
congruent mod p. If j = p� r, for 1 � r � M, then j � 0 mod (r+1) and there will thus be a missing
residue mod (r+1) among the elements ak in a consecutive string of r+1 good blocks which contains
the blocks Bu+i and Bu+i+1. This implies the existence of a p-term arithmetic progression (with common
difference r+1) which does not meet A.

The proof is concluded with the following contradiction: We have (t� 2p)p < at � a1 = j1 + j2 +

� � �+ jt�1 < (t�1)(p�M) which reduces to tM < p+M. This implies ((p�3C)=(3C+1))M = 2p�

6C < p+M, which is false for p� 12C+2.

Theorem 3. For each ε , 0 < ε < 1, and each positive integer k, let g(k;ε) denote the smallest positive

integer such that if m � g(k;ε), [1;m] � A and jAj > εm, then A must contain a k-term arithmetic

progression. (Thus g(k;ε) is the number whose existence is asserted by Szemerédi’s theorem.) Then for

every prime p and every ε , 0 < ε < 1,

g(p;ε)> p[(p�1) log(1=ε)]:

Also, if ε < 1=e then g(p;ε)> pp for sufficiently large p. In particular,

g(p;1=3)> pp for all p� 7:

(This means: for every prime p� 7, there is a subset A of [1; pp] such that jAj> 1
3 pp and A contains no

p-term arithmetic progression.)

Proof. For a given positive integer n, let A be the set of all integers x in [0; pn� 1] such that when x is
expressed as an n-digit p-ary number, none of the n digits is 0. Then A contains no p-term arithmetic
progression. (By considering the first non-zero digit in the p-ary form of the common difference of a
given p-term arithemtic progression, one easily sees that some term of the progression contains a zero in
p-ary form.) Clearly jAj=(p�1)n. Thus by the definition of g(k;ε), if (p�1)n > ε pn, then g(p;ε)> pn.
Now if n � (p�1) log(1=ε), then n log(1+1=(p�1)) < n=(p�1) � log(1=ε), so n log(p=(p�1))+
logε < 0, or ε pn < (p�1)n, so that g(k;ε)> pn. Taking n = [(p�1) log(1=ε)] we get

g(p;ε)> p[(p�1) log(1=ε)]:

Finally, if ε < 1=e then ε < ((p� 1)=p)p for large p, so that (p� 1)p > ε pp and g(p;ε) > pp. For
ε = 1=3, the inequalities hold for all p � 7. (In the same way, if ε < 1=ek then g(p;ε) > pkp for large
p.)

4 Remarks

1. Theorem 1 shows that the functions k(n) = (logn)=g(n), where g(n) = o(log logn), grow rapidly
enough that f (n;k(n)) = o(n). One naturally would like to find the boundary between those func-
tions k(n) for which f (n;k(n)) = o(n) and those functions k(n) for which f (n;k(n)) is not o(n). In
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particular, one would like to know whether or not f (n;(logn)=(log logn)) = o(n) and whether or not
f (n; log logn) = o(n). Naturally, if k(n) � h(n) and f (n;k(n)) = o(n), then f (n;h(n)) = o(n), since
f (n;h(n))� f (n;k(n)).

However, the statement that f (n; log logn) is not o(n) is stronger that Szemerédi’s theorem. In fact,
given any function k(n) which goes to infinity with n, the statement that f (n;k(n)) is not o(n) is stronger
than Szemerédi’s theorem. This is a consequence of Behrend’s theorem [1]. Indeed, if f (n;k(n)) 6= o(n),
then there exists an ε > 0 such that for infinitely many n,

[B� [1;n]; jBj< εn]) [B does not meet some k(n)-term A.P.]:

Then for the same set of (infinitely many) n,

[A� [1;n]; jAj> (1� ε)n]) [A contains a k(n)-term A.P.]:

Now let k be an arbitrary positive integer. Choose n0 so that the preceding implication holds for n = n0

and such that k(n0)� k. It easily follows that for all n� 2n0=ε ,

[A� [1;n]; jAj> (1� ε=2)n]) [A contains a k-term A.P.]:

This is exactly the hypothesis of Behrend’s theorem, and Szemerédi’s theorem is the conclusion.
2. The constant “12" which appears in Theorem 1 can be decreased to “2+ε" (at the cost of replacing

“whenever k(n)� 4" by “for all sufficiently large k(n)") by noting that in the Lemma we have f (n; p)�

(2+ε)tn=p for sufficiently large p, by using 1=(logk(n)� log2)� (1+ε) logk(n) for sufficiently large
k(n), and by using the Prime Number Theorem instead of Bertrand’s postulate. Then one obtains

f (n;k(n))�
(2+ ε)n logn
k(n) logk(n)

;

for all sufficiently large k(n).
On the other hand, the method of Theorem 1 also give f (n;k(n))� 18n logn=k(n) logk(n), whenever

k(n)� 3.

Note added in proof. Professor John Truss has improved Theorem 2 to f (n2;n)> n+n1=2=2, for all
n.
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