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Abstract

We obtain upper and lower bounds for the size of a largest family of 3-term arithmetic progressions

contained in [0;n�1], no two of which intersect in more than one point. Such a family consists of just

under a half of all the 3-term arithmetic progressions contained in [0;n�1].

MSC: 05D99

Keywords: Arithmetic progression, Almost disjoint

1 Introduction

This paper studies the problem of the maximum size of a family of 3-term arithmetic progressions of
integers from the interval [0;n� 1] such that no two have more than one integer in common. This
seemingly simple problem turns out to have a lot of interesting structure. To give it some context, it
can be viewed as an extremal set system problem with an arithmetic constraint. A partial t-(n;k)-design
is a family of k-element subsets of [0;n� 1] such that every two have less than t elements in common
(see [2]). A special case of a more general result of Deza et al. [1] (also [2, Theorem 6.3]) is that for
large n the number of subsets in a partial t-(n;k)-design is at most

�
n
t

�
=

�
k
t

�
(1)

and Rödl [3] (also [2, Theorem 6.4]) has shown that the maximum size of a partial t-(n;k)-design is in
fact asymptotic to

�n
t

�
=
�k

t

�
as n!∞. These are pure set-theoretic results and we should like to investigate

the effect of introducing some arithmetic constraints. There is little scope for arithmetic structure in a
2-element set, but a 3-element set of integers can be given arithmetic structure by insisting it is an
arithmetic progression, that is, it has the form fa;a+d;a+2dg, a;d 2 N.

We shall use the abbreviation “AP” for “arithmetic progression” and we denote a particular 3-term
AP fa;a+ d;a+ 2dg more briefly by ha;di. The problem of the maximum number of disjoint 3-term
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APs that can be packed into an interval [0;n�1] is trivial: obviously the maximum number is � bn=3c
and this number is achieved by the family h0;1i ;h3;1i ; : : : ;h3bn=3c�3;1i. This can be described as the
problem of finding a large partial 1-(n;3)-design consisting of APs. The next level of complexity is to
look for large partial 2-(n;3)-designs consisting of APs, which is our problem of finding large families of
3-term APs in [0;n�1] such that no two APs have more than one number in common. We shall call such
a family of 3-term APs almost disjoint. We shall show that, as for unrestricted partial 2-(n;3)-designs,
the maximum size of a family of almost disjoint 3-term APs is asymptotic to a constant multiple of n2,
but that the constant is smaller than the value 1/6 given by (1) for the unrestricted case.

The total number of 3-term APs in [0;n�1] is

�
bn=2c

2

�
+

�
dn=2e

2

�
=

n2

4
+O(n) (2)

(the number of pairs of integers in [0;n� 1] whose difference is even) so we shall express the sizes of
families of 3-term APs in terms of multiples of n2=4, so that the multiplier tells us what asymptotic
proportion of the total our family is.

Being almost disjoint puts little constraint on a family of 3-term APs because any AP ha;di has two
numbers in common with at most six others, namely

ha;d=2i ;ha+d;d=2i ;ha�d;di ;ha+d;di ;ha�2d;2di ;ha;2di (3)

(Of these the first two occur only when d is even and some of the others do not occur when a < 2d or
a � n� 4d.) This immediately shows that any maximal almost disjoint family in [0;n� 1] contains at
least 1/7 of all 3-term APs in [0;n�1], so has size � 1

7 (n
2=4)�O(n), and this bound can be increased

to 3
14 (n

2=4)�O(n) if we also take account of the fact that a proportion of about 1/12 of the 3-term APs
ha;di in [0;n� 1] (those with d odd, a < d and a � n� 3d) are completely disjoint from all others.
Similar considerations give an upper bound 73

84 (n
2=4)+O(n) for the size of a maximal almost disjoint

family of 3-term APs in [0;n�1], though this is weaker than the upper bound 2
3 (n

2=4) obtained from the
more widely applicable estimate (1).

Our main result is to show that the maximum size of an almost disjoint family of 3-term APs in
[0;n�1] is asymptotic to C(n2=4), for some C in the range 0:476 <C < 0:485. We also obtain a lower
bound of the form exp(cn2) for the number of families that achieve this maximum size.

2 Dyadic APs and the key relation

A feature that makes our problem tractable (in addition to the fact mentioned above that a 3-term AP can
have two numbers in common with at most six others) is that (as can be seen from (3)) two 3-term APs
with two numbers in common either have the same common difference or else the common difference
of one is exactly twice that of the other. This means that if we partition a set of 3-term APs into subsets
according to the largest odd factor of the common difference then APs from different subsets never have
two members in common, so that our problem is equivalent to finding the maximum size of an almost
disjoint family within each subset. With this in mind, we call a 3-term AP whose common difference
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is a power of 2 dyadic and call a collection of dyadic 3-term APs such that each two have at most one
number in common an almost disjoint dyadic family.

Definition 1. Let A(n) be the set of all 3-term APs contained in [0;n�1] and A2(n) the set of all dyadic

3-term APs contained in [0;n� 1]. We denote by F(n) the maximum size of any almost disjoint family

in A(n) and by f (n) the maximum size of any almost disjoint family in A2(n). We also extend f to

non-negative real values of its argument by linear interpolation between its values at integers.

The size of A(n) is given by (2), and for the total number of dyadic 3-term APs in [0;n�1] we have

jA2(n)j= n log2 n+O(n)

since this is the number of pairs of integers in [0;n�1] whose difference is a positive power of 2. So we
shall express our results for the size of f (n) in terms of multiples of n log2 n.

The following proposition gives a key relationship between F and f (and is the reason why we
interpolate f between integers).

Proposition 2. For every positive integer n we have

F(n) = f (n)+3 f (n=3)+5 f (n=5)+ � � � : (4)

Proof. We note that the sum on the right is finite, since f (x) = 0 for x � 2, and is an integer, since
f (n=m), as a linear interpolation between integer values at integers, has denominator a divisor of m.

We partition A(n) as

A(n) =
[

m odd

m�1[
a=0

Aa;m(n) (5)

where Aa;m(n) consists of those APs in [0;n� 1] whose common difference is a power of 2 times m

and whose first term is congruent to a mod m. Then A0;1(n) = A2(n) and subtracting a and dividing
by m gives a one-one order-preserving affine map from Aa;m(n) to A2(v(n;m;a)), where v(n;m;a) is the
number of integers in [0;n� 1] congruent to a mod m. (So v(n;m;a) is dn=me when a < mfn=mg and
bn=mc when a�mfn=mg, where fxg means the fractional part of x.) No two APs from different subsets
Aa;m intersect in two points because APs from sets with different m’s have incompatible lengths and
APs from sets with the same m but different a’s lie entirely in separate residue classes mod m so do not
intersect at all. Hence, any maximum-sized almost disjoint family in A(n) is a union of maximum-sized
almost disjoint families in the Aa;m(n)’s and

F(n) = ∑
m odd

m�1

∑
a=0

f (v(n;m;a))

Since
m�1

∑
a=0

v(n;m;a) = n (6)

and f is defined between bn=mc and dn=me by linear interpolation, the inner sum is m f (n=m), giving
(4).
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We end this section with some simply obtained bounds for f (n) and F(n) which (for F(n)) improve
the bounds sketched in the introduction but which we shall further improve to asymptotic formulae later.

Proposition 3.

(i) 1
2 n�1 � f (n)< 1

3 (n log2 n).

(ii) 1
3 (n

2=4)�O(n)< F(n)< 2
3 (n

2=4).

Proof. The lower bound in (i) is immediate, since the dn=2e�1 3-term APs ha;1i with a an even number
in [0;n�3] are almost disjoint. In fact, more generally, we clearly have f (n+2)� f (n)+1 for n � 1.

For the upper bound in (i) we count the number of pairs of numbers contained in all the 3-term APs
of a family. A dyadic almost disjoint family of maximum size in [0;n�1] contains 3 f (n) distinct pairs
of numbers whose difference is a power of 2. Since the total number of pairs in [0;n�1] differing by a
power of 2 is

blog2 nc

∑
e=0

(n�2e)< n(log2 n+1)�n;

this gives (i).
The proof of the upper bound in (ii) is the same, but we drop the restriction that the pairs differ by a

power of 2 and note that the total number of pairs in [0;n�1] is
�n

2

�
< n2=2.

For the lower bound in (ii), let S be an almost disjoint family in [0;k� 1] of maximum size and
consider what 3-term APs from [0;k] can be added to it. If k=2 � i < 2k=3 then f2i� k; i;kg can be
added unless f2i� k;(3i� k)=2; ig 2 S. But in that case k� i is even and f(3i� k)=2; i;(k+ i)=2g =2 S,
so fi;(k+ i)=2;kg can be added. Hence for every i 2 [k=2;2k=3) a 3-term AP containing fi;kg can be
added, and any two of these AP’s meet only in k. So f (k+1)� f (k)> k=6�1 and summing from k = 2
to n�1 gives the lower bound in (ii).

We note that the argument that gives the upper bound in (ii) makes no use of the fact that the triples
are APs and, as a result, gives a bound coinciding with (1), valid for unrestricted partial 2-(n;3)-designs.

For f (n), the lower bound given by this proposition is not of the right order of magnitude — we shall
see later (Theorem 9) that f (n) is in fact asymptotic to 1

3 n log2 n. We have already mentioned that F(n)

is asymptotic to C(n2=4) with C > 0.476. It is at first sight paradoxical, in view of the direct relationship
(4), that f (n) and F(n) should be asymptotic to different proportions of the sizes of A2(n) and A(n):
if, for each n, the maximum number of almost disjoint dyadic 3-term APs in [0;n�1] is approximately
1/3 of the total number of dyadic APs and the set of all 3-term APs in [0;n� 1] is a disjoint union of
sets in one-one correspondence with the set of dyadic APs in [0; l � 1] for some l � n, then how can
significantly more than 1/3 of the 3-term APs in [0;n�1] be almost disjoint? The answer is that a large
and non-decreasing proportion of the numbers l � n=m are small enough that f (l) is not yet close to
its limiting order of magnitude; put more concisely, small values of n=m make a major contribution to
sum (4). A simpler example of this phenomenon is the set P(n) of pairs of numbers in [0;n�1], which
decomposes into disjoint subsets each in one-one correspondence with a set of dyadic pairs (that is, pairs
whose difference is a power of 2) in such a way that the parity of differences is preserved. As n tends to
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infinity the proportion of dyadic pairs in [0;n�1] with odd difference tends to 0. (There are dyadic pairs
with odd difference, but only those with difference 1.) But for every n more than half the general pairs
in [0;n�1] have odd difference.

3 The asymptotic formula

The following lemma enables us to show that F(n) is asymptotically a constant multiple of n2.

Lemma 4. Let φ(x) be any function that is defined for x> 0, is linear between consecutive integer values

of x, is 0 for 0 < x � 1 and satisfies φ(x) = O(x lnx) as x ! ∞. Then the function Φ(n), defined by

Φ(n) =
∞

∑
m=1
m odd

mφ(n=m) (7)

satisfies

Φ(n) = B(n2=4)+O(n5=3 lnn); (8)

where

B =
∞

∑
k=2

2φ(k)
k(k2�1)

: (9)

If, further, φ(x+1)�φ(x) = O(lnx) as x!∞ then the error term in (8) can be decreased to O(n3=2 lnn).

Proof. Split sum (7) into ranges of the form

n
k+1

< m �
n
k

(k = 1;2;3; : : :); (10)

in each of which φ(n=m) is linear. By the linearity,

mφ(n=m) = ((k+1)m�n)φ(k)+(n� km)φ(k+1)

= ((k+1)φ(k)� kφ(k+1))m+(φ(k+1)�φ(k))n

for m in range (10). Now summing over all odd m in a given range gives

n2

4
((k+1)φ(k)� kφ(k+1))

�
1
k2 �

1
(k+1)2

�

+O
�n

k
((k+1)φ(k)� kφ(k+1))

�

+
n2

2
(φ(k+1)�φ(k))

�
1
k
�

1
k+1

�
+O(n(φ(k+1)�φ(k)))

=
n2

4

�
φ(k)

k2(k+1)
+

φ(k+1)
k(k+1)2

�
+O

�
n
�

φ(k+1)�φ(k)+
φ(k)

k

��
; (11)

where we have used the fact that the sum of an arithmetic progression is equal to the number of terms
times the average of the end terms.
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Finally, summing from k = 1 to K gives

Φ(n) = B(n2=4)+O
�

n2 lnK
K

�
+O(nK2 lnK); (12)

where the main term is the sum from 1 to infinity of the main term in (11), the first error term comes
from the tail of the series from K +1 to infinity, and the second error term is the sum from 1 to K of the
error term in (11). Now taking K =

�
n1=3

�
gives (8), where the fact that φ(1) = 0 has been used to put B

in form (9). When φ(x+1)�φ(x) = O(lnx) the second error term in (12) decreases to O(nK lnK) and
taking K =

�
n1=2

�
gives an error term O(n3=2 lnn) in (8).

Corollary 5. F(n) =C(n2=4)+O(n3=2 lnn), where

C =
∞

∑
k=3

2 f (k)
k(k2�1)

(13)

Proof. Only the estimate f (k+1)� f (k) = O(lnk) remains to be checked, since this implies that f (k) =

O(k lnk). This is immediate from the fact that there are only blog2 kc dyadic 3-term APs in [0;k] whose
last term is k.

For later use, we note that two 3-term APs with last term k whose common differences are consecu-
tive powers of 2 are not almost disjoint, and hence that

f (k+1)� f (k)� dblog2 kc=2e: (14)

We mentioned earlier, in discussing relation (4), that F(n) for large n, depends heavily on f (k) for small
values of k. Expression (13) for the constant C in the asymptotic formula for F(n) shows this dependence
very explicitly.

The value of C can be estimated from Proposition 3(i). For the lower bound, sum (13) with f (k)

replaced by dk=2e� 1 can be explicitly summed to 1� ln2 = 0:306 : : :, weaker than the lower bound
C � 1

3 implied by the left hand inequality of Proposition 3(ii). For the upper bound, we define a function
φ(k) for k � 3 recursively by

φ(3) = 1; φ(k+1) = min(
�
((e+1)(k+1)�2e+1 +1)=2

�
;φ(k)+ de=2e);

where 2e is the largest power of 2 that is � k, the first term in the minimum comes from the proof of the
upper bound in Proposition 3(i), and the second term in the minimum comes from (14). Now replacing
f (k) in (13) by φ(k) for 3 � k � 4097 and using the upper bound (12+1= ln2)=6144 for the tail of the
series from k = 4098 onwards, derived from comparison with

Z
∞

4096

2log2 xdx
3x2

gives C < 0:506.
We next improve these estimates for C by computing f (k) exactly for some small values of k.
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4 Particular values of f (n)

There are of the order of nn families of dyadic 3-term APs in [0;n�1], so it soon becomes infeasible to
look at them all and select the maximum-sized disjoint families. The number of families we need to look
at is vastly reduced if we know in advance the possible numbers fe(n) (e = 0;1; : : : ;dlog2 ne�2) of APs
with common difference 2e in a maximum-sized almost disjoint family. These numbers satisfy

fe(n)� 2e(fn=2egddn=2eel=2e+(1�fn=2eg)dbn=2ec=2e�1) (15)

for 0 � e � dlog2 ne�2, and
fe(n)� n�2e+1�2 fe+1(n); (16)

for 0 � e � dlog2 ne� 3. Though they look complicated in this notational form, these inequalities are
based on two simple observations. The first is that the leading terms of the n� 2e+1 3-term APs in
[0;n� 1] with common difference 2e fall into 2e residue classes mod 2e and that consecutive members
of the same residue class cannot occur within an almost disjoint family. (This leads to (15).) The second
observation is that each AP with common difference 2e+1 in an almost disjoint family excludes two APs
with common difference 2e and that the APs excluded by any two almost disjoint APs with common
difference 2e+1 are different. (This gives (16).) An upper bound for f (n) is given by the maximum, over
all vectors ( f0(n); f1(n); : : : ; fl(n)) satisfying (15) and (16), of the sum f0(n)+ f1(n)+ � � �+ fl(n). (Here
l = dlog2 ne�2.) Table 1 lists the vectors ( f0(n); f1(n); : : : ; fl(n)) with maximum sum for n = 3; : : : ;15
and the number of almost disjoint families corresponding to each vector, computed (for the larger values
of n) by a tree-searching algorithm. When there is no such family we list the vectors of successively
smaller sums until we come to one for which there is an almost disjoint family. The first instance of this
is n = 10 and the first instance where one of the maximum sum vectors has no corresponding family is
n = 9. Beyond 15 the number of maximum sum vectors starts to get large, so for n = 16–22, instead
of listing the individual vectors, Table 1 simply lists the number of vectors with the maximum sum and
with each successively smaller sum down to the largest for which there exists a corresponding almost
disjoint family. The first instance of there being no family corresponding either to the maximum sum or
to one less than the maximum sum is n = 17.

For all values of n covered by the table f (n) = g(n), where g(n), defined in Definition 6 in the next
section, is an easily computed function. This continues to hold at least up to n = 29, as we have verified
by using the methods of this section to check that there are no almost disjoint dyadic families of size
g(n)+1. (By Theorem 7, f (n)� g(n).) The extra values of f are

f (23) = 26; f (24) = 27; f (25) = 29; f (26) = 30

f (27) = 32; f (28) = 33; f (29) = 34:

By using the exact values of f for n � 29 in (13), we obtain the improved estimate

0:419 <C < 0:485

where for n > 29 in the lower bound we have used the estimate f (n) � f (n� 2)+ 1 (mentioned in the
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Vectors with large sums satisfying (15) and (16) and the number of almost disjoint dyadic families
corresponding to them

n 3 4 5 6 7

(1) 1 (1) 2 (1,1) 1 (2,1) 2 (3,1) 1
(2,0) 1

n 8 9 10 11 12

(2,2) 2 (3,2,1) 0 (4,2,2) 0 (5,1,3) 1 (5,2,3) 6
(3,1) 6 (4,1,1) 2 (3,2,2) 0 (5,2,2) 1

(4,1,2) 4
(4,1,2) 4
(4,2,1) 2

n 13 14 15 16 17

(5,3,3) 3 (6,2,4) 3 (7,3,4) 0 14;2 0 17;1 0
(6,1,4) 0 (6,3,3) 6 (6,3,4) 0 13;5 222 16;5 0
(6,2,3) 4 (7,2,4) 0 15;13 60

(7,3,3) 4

n 18 19 20 21 22

19;1 0 21;1 0 22;1 0 23;5 0 25;1 0
18;5 0 20;6 0 21;7 0 22;18 50 24;7 24
17;14 24 19;17 8 20;21 124

Table 1: For n � 16, s;v f indicates a set of v vectors of sum s with a total of f corresponding families. For
n = 3; : : : ;15, the vector listed last is the vector for the standard dyadic family, described in Section 5.

proof of Proposition 3) and in the upper bound we have estimated the tail of the series as in the previous
section.

5 The standard families

To get a better lower bound for C we need a good lower bound for f (k), which we find by identifying, for
each k, a large “standard” almost disjoint family of 3-term APs. We shall see later that these “standard”
families are those that are produced by certain greedy algorithms. They are maximum-sized for n up to
29 at least, and they enable us to improve the lower bound for f (n) in Proposition 3(i).

Definition 6. The standard dyadic family S2(n) in A2(n) is the family of 3-term dyadic APs


a;2e�1

�
in [0;n� 1] such that the final e binary digits of a begin with a string of 0’s of odd length. We write

g(n) = jS2(n)j. Again we extend the function g to R+ by linear interpolation between integers.

Theorem 7. The standard dyadic family is almost disjoint. Hence g(n)� f (n).

Proof. Let


a;2e�1

�
2 S2(n). The six 3-term APs that, according to (3), are candidates for having two

numbers in common with this one are



a;2e�2� ;
a+2e�1;2e�2� ;
a�2e�1;2e�1� ;
a+2e�1;2e�1� ;ha�2e;2ei ;ha;2ei

(The first two do not exist when e = 1, and some of the last four may be out of range, depending on the
values of a, e and n.) It is easily checked that none of these is in S2(n): for the first two, a and a+2e�1
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agree with a in their last e�1 digits, which therefore begin with a string of 0’s of even length (possibly
empty); for the next two, the last e digits of a� 2e�1 begin with a 1; and for the last two, a� 2e and a

agree with a in their last e digits so their last e+ 1 digits either begin with 1 or a string of 0’s of even
length.

Since the dyadic family S2(n) is almost disjoint for all n so is the family

S(n) =
[

m odd

m�1[
a=0

(mS2(v(n;m;a))+a)�
[

m odd

m�1[
a=0

Aa;m(n) = A(n)

We call this simply the standard family in [0;n�1] and denote its size by jS(n)j= G(n). An alternative
description of it is that it is the family of all 3-term APs



a;2e�1m

�
2 A(n) with m odd and the final e

binary digits of ba=mc beginning with a string of 0’s of odd length. Clearly G(n) � F(n) and, by the
same argument as in the proof of Proposition 2, we have

G(n) = g(n)+3g(n=3)+5g(n=5)+ � � � (17)

In view of (17) and the fact, mentioned in the proof of Corollary 5, that there are only blog2 kc dyadic
3-term APs in [0;k] with last term k, the strong form of Lemma 4 is applicable with g and G in place of
φ and Φ, and we have:

Theorem 8. The function G(n) satisfies

G(n) = D(n2=4)+O(n3=2 lnn) (18)

where

D =
∞

∑
k=3

2g(k)
k(k2�1)

(19)

Since G(n)� F(n) for all n, D �C. In the next section, we obtain a remarkable explicit formula for
D that enables us to significantly improve our lower bound for C.

The standard dyadic families are large enough to give the correct asymptotic size of f (n).

Theorem 9. The function f (n) satisfies

f (n) =
1
3

n log2 n+O(n)

Proof. The upper bound has already been established in Proposition 3 and the lower bound comes from
bounding below the size of S2(n). For a given e, the numbers a whose last e binary digits begin with
a string of 0’s of odd length have period 2e and there are (2e � (�1)e)=3 of them per period, since this
is the number of e-digit binary numbers with an odd number of leading 0’s. All such a’s in the range
0 � a < n�2e give APs ha;2e�1i in S2(n), so the number of these is

�
1
3
(2e�1)(bn=2ec�1)>

1
3

n(1�2�e)�
1
3

2e+1:

Now summing from e = 1 to blog2 nc gives f (n)> 1
3 n log2 n�O(n).
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6 The value of D

We now show how to obtain a remarkably simple expression for D as a sum involving values of the
Riemann ζ -function. This makes it easy to approximate D extremely accurately and hence get a good
numerical lower bound for C.

Let ge(k)1 be the number of APs in the standard dyadic family S2(k) with common difference 2e�1.
We shall calculate sum (19) by replacing g(k) by ge(k) and then summing over e. Let χe, for e� 1, be the
characteristic function of the set of non-negative integers whose final e binary digits begin with a string
of 0’s of odd length. Clearly χe has period 2e, and in the range [0;2e] it changes value only at powers of
2. By the definition of the standard dyadic family, ge(k) is the sum of χe( j) over j 2 [0;k� 2e), which
by the periodicity of χe is the same as the sum over j 2 [2e;k). Thus

∞

∑
k=3

2ge(k)
k(k2�1)

=
∞

∑
k=2e

2
k(k2�1)

k�1

∑
j=2e

χe( j): (20)

Since 1=k(k2 � 1) is a second difference of the sequence 1=k and χe is constant over long ranges, the
sum on the right can be greatly simplified by partial summation in the form

∞

∑
k=K

(ak�1�ak)bk = aK�1bK +
∞

∑
k=K

ak(bk+1�bk):

With ak = 1=k(k+1) and K = 2e the right hand side of (20) becomes

∞

∑
k=2e

χe

k(k+1)
: (21)

To carry out a second partial summation we write k = 2eq+ r, with 0 � r < 2e, and note that

χe(k)�χe(k�1) =

8><
>:

ē if r = 0;
(�1)e�i if r = 2i with 0 � i < e;

0 otherwise;

where ē 2 f0;1g is the residue of e modulo 2. Now partial summation with ak = χe(k), bk = 1=k and
K = 2e transforms (21) into

∞

∑
q=1

 
ē

2eq
+

e�1

∑
i=0

(�1)e�i

2eq+2i

!
=

∞

∑
q=1

e�1

∑
i=0

(�1)e�i

2i

�
1

2e�iq+1
�

1
2e�iq

�
:

Summing over e from 1 to infinity gives an absolutely convergent double sum for D, which can be
evaluated by making the substitution e0 = e� i and inverting the order of summation to get

D =
∞

∑
q=1

∞

∑
i=0

1
2i

∞

∑
e0=1

(�1)e0+1

2e0q(2e0q+1)
= 2

∞

∑
q=1

∞

∑
e=1

(�1)e0+1

2eq(2eq+1)

1This differs from the analogous notation fe in Section 4 in that the common difference was 2e but here, in order to keep
formulae short, we take it to be 2e�1.
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where at the final step we have renamed the variable e0 as e.
In view of the somewhat artificial nature of our problem, this expression for D is remarkably simple,

but the sum over q converges too slowly to make it easy to approximate D to any great accuracy. To
remedy this we put the expression in an even more concise and amenable form by expanding each term
as a power series in 1=2eq, evaluating the sum over e, and reversing the order of summation in the
remaining variables. Explicitly

D = 2
∞

∑
q=1

∞

∑
e=1

(�1)e+1
∞

∑
m=2

�
�1
2eq

�m

= 2
∞

∑
q=1

∞

∑
m=2

(�1)m

(2m +1)qm = 2
∞

∑
m=2

(�1)mζ (m)

2m +1

where ζ (m) = ∑
∞
m=1 1=qm is the Riemann ζ -function. For even m, ζ (m) can be given explicitly in terms

of π and the Bernoulli numbers, and for odd m there are ways of efficiently approximating it. The sum
over m then converges geometrically, and is even alternating and decreasing in size, allowing simple
error bounds and enabling D to be calculated to almost unlimited accuracy.

As a result of these last three sections we have

Theorem 10.

(i) D = 2∑
∞
m=2

(�1)mζ (m)
2m+1 = 0:47621693 : : :

(ii) D �C < 0:485

It is of interest to relate the sum in (i) over values of the ζ -function to binary representations more
directly than via the function g that measures the standard dyadic families. Keeping k fixed and summing
χe(k) over values of e with 1 < 2e � k counts the number of 0’s in the binary representation of k that
are an odd number of places from the end of a string of 0’s. This number is 1

2 z(k)+ 1
2 s(k), where z(k)

is the total number of 0’s in the binary representation of K and s(k) is the number of strings of 0’s of
odd length. So summing (21) over e, inverting the order of summation on the left and using our previous
evaluation on the right, gives

∞

∑
k=1

z(k)
2k(k+1)

+
∞

∑
k=1

s(k)
2k(k+1)

= D:

The first of the sums on the left straightforwardly evaluates to 1� ln2, by partial summation, giving the
value of the second sum on the left as D+ ln2�1.

7 The number of maximum-sized families

We see from Table 1 that maximum-sized almost disjoint families of dyadic 3-term APs are far from
unique in general, and as a consequence the same applies to unrestricted 3-term APs. In this section, we
use Lemma 4 to obtain a reasonably sharp estimate for the number of maximum-sized almost disjoint
families.
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Definition 11. Let H(n) be the number of maximum-sized almost disjoint families in A(n) and h(n) the

number of maximum-sized almost disjoint families in A2(n). We extend the function h to R+ by requiring

that h(x) = 1 for 0 � x � 2 (when the only almost disjoint family is the empty family!) and that lnh(x) is

linear between integer values of x for x � 2.

Because an almost disjoint family in A(n) is maximum-sized if and only if its intersection with each
of the parts Aa;m(n) in partition (5) is maximum-sized we have

H(n) = ∏
m odd

m�1

∏
a=0

h(v(n;m;a) = ∏
m odd

h(n=m)m (22)

where the last step follows from (6) and the linearity of lnh between integers. Since

jh(n)j � 2jA2(n)j;

Lemma 4 with φ(x) = log2 h(x) and Φ(n) = log2 H(n) gives

log2 H(n) = E(n2=4)+O(n5=2 lnn);

where
E =

∞

∑
k=3

2log2 h(k)
k(k2�1)

: (23)

Bounds for E can be calculated from the values of h(k) for small k, which are implicit in Table 1. In
Table 2, we list these values explicitly as far as we have calculated them. We have also collected in Table
2 the corresponding values of f (implicit in Table 1 too), of F (calculated from (4)) and of H (calculated
from (22)).

We have

E �
22

∑
k=3

2log2 h(k)
k(k2�1)

= 0:102555 : : :

and

E �
22

∑
k=3

2log2 h(k)
k(k2�1)

+
513

∑
k=23

2log2
�a(k)

b(k)

�
k(k2�1)

+
9+1= ln2

256
�

2
257

< 0:447;

where

a(k) =
blog2 kc

∑
e=1

(k�2e) and b(k) =

$
1
3

blog2 kc

∑
e=0

(k�2e)

%

are upper bounds for jA2(k)j and f (k) (derived from the proof of Proposition 3(i)), and for the tail of
series (23) beyond 513 we have used the cruder estimate log2 h(k)< jA2(k)j � k log2 k�2k+2. A more
intuitive way of describing these bounds is to say that the number of maximum-sized almost disjoint
families of 3-term APs in [0;n� 1] is asymptotically greater than the 10th root of the total number of
families of 3-term APs and asymptotically less than the square root of the total number of families.

We note that there is a unique maximum-sized almost disjoint family only for n = 3 and n = 7, since
for n � 10 there is always an odd m � 3 with 3 < n=m < 7 and then h(n=m)> 1.
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n f (n) F(n) h(n) H(n)

3 1 1 1 1
4 1 1 2 2
5 2 2 2 2
6 3 3 2 2
7 4 5 1 1
8 4 6 8 8
9 6 9 2 2
10 7 10 6 12
11 9 13 2 8
12 10 15 6 48
13 11 18 7 56
14 12 21 9 72
15 13 25 4 32
16 13 27 222 3552
17 15 31 60 1920
18 17 35 24 1536
19 19 40 8 512
20 20 44 124 7936
21 22 50 50 1600
22 24 54 24 6144

Table 2: Values of f (n);F(n);h(n) and H(n)

8 Greedy Algorithms

By a greedy algorithm for constructing an almost disjoint family we mean choosing an ordering of A(n)

(or A2(n)) then inspecting the members of A(n) or A2(n) in order, discarding only those that overlap in
at least two places some member already inspected and not discarded. The following lemma enables us
to see why several different greedy algorithms produce the same standard families.

Lemma 12. If


a;2e�1

�
is a member of A2(n) that is not in S2(n) then at least one of



a;2e�2

�
and


a�2e�1;2e�1
�

is in S2(n).

Proof. Since


a;2e�1

�
=2 S2(n) the last e binary digits of a begin with a string of 0’s of even length. If

this string of 0’s is not empty then e > 1 and the last e�1 binary digits of a begin with a string of 0’s of
odd length, so ha;2e�2i 2 S2(n). On the other hand, if the digit e from the end of a is 1 then a � 2e�1

and the last e digits of a� 2e�1 begin with a non-empty string of 0’s. If this string has odd length then

a�2e�1;2e�1

�
2 S2(n) and if it has even length then



a;2e�2

�
2 S2(n), since a and a�2e�1 have the

same last e�1 digits.

Lemma 12 shows that any greedy algorithm for A2(n) that always lists


a;2e�1

�
before either of


a+2e�1;2e�1
�

or ha;2ei produces precisely the family S2(n). Since S2(n) is almost disjoint no member
of S2(n) will be rejected until at least one AP not in S2(n) has been retained. Suppose



a;2e�1

�
is the

first AP not in S2(n) to be retained. By Lemma 12, at least one of


a�2e�1;2e�1

�
and



a;2e�2

�
is in

S2(n) so has already been retained. But both these APs have 2-point intersection with


a;2e�1

�
, contrary

to the supposition that


a;2e�1

�
can be retained.

Now expression (5) for A(n) as a union of families, each the image of some A2(v) under an order-
preserving affine map and with no APs of different families having 2-point intersection, shows that
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the standard family S(n) is produced by any greedy algorithm for A(n) that lists ha1;di before ha2;di

whenever a1 < a2 and ha;d1i before ha;d2i whenever d1 < d2. The following four greedy algorithms are
all of this type:

1. Order the ha;di’s first on increasing a and then on increasing d.

2. Order the ha;di’s first on increasing d and then on increasing a.

3. Order the ha;di’s first on increasing a+2d (the last term of ha;di), then on increasing a, then on
increasing d.

4. Order the ha;di’s first on increasing a+2d, then on increasing d, then on decreasing a.

It was noticing that (1) and (2) always give the same family that led us to the description of the
standard families. All greedy algorithms are equally efficient for a single value of n, but (3) and (4) are
better when S(n) is wanted for a range of values of n, since they find S(3);S(4);S(5); : : : successively on
the way to finding S(n). The proof of the lower bound in Proposition 3(ii) can be regarded as a partial
analysis of the operation of algorithms (3) and (4).

Although these different algorithms produce the same standard families, we know that maximum-
sized almost disjoint families are not unique for any n > 7. In particular, the standard family has mirror
symmetry in the point (n� 1)=2 only for n = 3;5 or 7, as can be seen from the pattern of AP’s with
d = 4 (noting that the APs with d = 3 exclude the case n = 11). Any greedy algorithm that ordered on
increasing d but decreasing a would find the mirror images of the standard families.

9 Summary

In this paper, we have established that the maximum size of an almost disjoint family of 3-term APs in
[0;n�1] is asymptotic to C(n2=4) for some constant C which we have estimated to within 1% (roughly,
0:476 <C < 0:485).

We have also shown that the number of families achieving the maximum size is asymptotically larger
than the 10th root of the total number of 3-term APs in [0;n�1].

In the course of doing this we have stumbled across the following remarkable identity, where s(k) is
the number of strings of 0’s in the binary representation of k that have odd length and ζ is the Riemann
ζ -function:

∞

∑
k=1

s(k)
2k(k+1)

= ln2�1+2
∞

∑
m=2

(�1)mζ (m)

2m +1
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