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1 Introduction

Let B(k,m,n) denote the semigroup generated by k elements and satisfying the identity x™ = x", where
0 <m < n. That is, B(k,m,n) is the free semigroup on k generators in the variety of semigroups defined
by the law x™ = x" (we are following the notation of Lallement [7]).

Green and Rees [6] showed that for each n > 1, the semigroups B(k, 1,n) are finite for all k > 1 if
and only if the groups B(k,0,n — 1) are finite for all k > 1. Thus in particular all semigroups in which
x = x? are locally finite, and so are all semigroups in which x = x>. The word problem for semigroups in
which x = x> was solved by Gerhard [5].

The existence of an infinite sequence on 3 symbols in which there are no two consecutive indentical
blocks shows that B(3,2,3) is infinite, since the left factors of such a sequence will all be distinct modulo
the law x*> = x>. This was first observed by Morse and Hedlund [9], who constructed such a sequence.
An earlier construction of such a sequence was given by Thue [! 1], and other constructions appear in
Dean [3], Dejean [4], and Leech [&].

It is much more difficult to show that B(2,2,3) is infinite. This was done by Brzozowski, Culik II,
and Gabrielian [2], and is also described in Lallement [7]. It follows that B(k,m,n) is infinite for all
k>2,n>m>2,since B(k,2,3) is a quotient of B(k,m,n).

It was shown in [1] that S = B(k,2,3) is the disjoint union of locally finite subsemigroups. Specifi-
cally, for each idempotent e = ¢? in S, let S, = {x € S : x> = ¢}. Then S is the union of the locally finite
subsemigroups S,.

It has been asserted [10] that each S, is in fact a finite subsemigroup of S. As far as the author knows,
no proof of this assertion has been published. One possible approach of such a proof would be to show
that if x is any element of S and g is any generator of S, no too much ’cancellation’ can occur in the
product gx.

To make this precise, for each x in S let |x| denote the length of x, that is, the smallest integer p such
that x can be written as the product of p (not necessarily distinct) generators of S.

Then if there exists a constant ¢ > 0 such that |gx| > c|x| for every generator g of S and every element

x of S, it would follow that S, is finite, for if |e| =¢ and x € S,, then e = ex, so ¢ = |ex| > ¢'|x|, which

bounds the length of x.



What could be the largest possible numerical value of such a constant ¢? This is the subject of the

present note.

2 An Upper Bound for the Constant ¢

Since the value of ¢ depends on k, the number of generators of S, we make the following definition.

Definition. Letg;,g2,...,8%,--., be asequence so that for each k> 1, g1, 42,...,8 is a set of generators
for the semigroup By = B(k,2,3), and let B, = B; UB,U---. For each k > 1, let ¢, be the largest real
number such that for all x € By and all i, 1 <i <k,

gix| > cilx|. Similarly, let ¢4 be the largest real
number such that for all x € By, and all i > 1, |gix| > celx]|-

Note that if Cy is the set of all real numbers ¢ such that |g;x| > c|x| for 1 <i < k and x € By, then
¢ = sup Cr = max Cy.
Since 2 = |g1(g1)?| > c1|(g1)?| = 2¢1, we have 1 = ¢y, and since By D Byy1 D By, we have ¢; >
Ci+1 > Cg, SO that
l=c1Z2c2>2 22412 2co20.

It is easy to see that 2/3 > ¢,. For let A = gog3---g, nd x = AgiAgiA. Then |x| =3p—1 and
|g1x] = |g1Ag1A| = 2p, so that for all p > 2,

24 2 V=gl > coldd
37 gp_3) TSI = Coltl

We will improve the bound of 2/3 to (v/5 — 1)/2 ~ .618 by finding, for each & > 0, elements x,y in

B so that
5-1
lg1xy%| < <f +6> 7.
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For this we need the following two lemmas.

Lemma 1. Let a,b,c € By, where the generator g| does not occur in any of a,b,c. Then |agibgi| =
|a| + |b| +2, and (unless a = b = ¢) |ag1bgicgi| = |a| + |b| + |c| + 3.

Proof. For words X,Y in the alphabet {g1,82,83,...}, let us say that X is equivalent to Y, and write X ~
Y, in case X can be transformed into ¥ by means of a finite sequence of expansions’ UW?V — UW3V
and ’contractions’ UW3V — UW?2V, where U, W,V are any words, possibly empty.

To prove the first equality of the lemma, suppose that Ag|Bg1C = X ~ Y = EgFgG, where the
letter g; does not occur in any of the words A, B,E, F. (At this point we need not assume that g; does
not occur in C or G; reading X from left to right, the word A is the segment of X which precedes the first
occurrence of g1, and the words B, E, F are similarly characterized.) We will show that A~ E and B F'.
It suffices to consider the case where X = Ag1BgC = UW?V,UW?3V = Eg Fg,G =Y. By considering
the several possible locations of W? in X (and noting that W2 contains at least two g;s if it contains one),
one sees easily that A ~ E and B &~ F. The fact that |ag bg;| = |a| + |b| + 2 now follows easily.

For the second equality of the lemma, we need to use also that 'right-handed’ version of the pre-

ceding, namely that if Ag1Bg|C ~ Eg|FgG, where the letter g; does not occur in any of the words



B,C,F,G, then B =~ F and C = G. Then, if the shortest product of generators which equals ag;bg;cg;
contains at least three gs, it contains only three gis, and |ag1bgicgi| = |a| + |b| +|c| + 3. If the shortest
such product contains only two g1s, then it is not hard to see thata = b = c. O

Lemma 2. Define elements x,,,y, in By for all n > 2 inductively as follows. Let xy = g», y» = g182. For

n 22, let Xpi1 = XpYn&nt1, Yntl = xn}’%gnﬂ' Then for n > 2, glxn+l)’n+l| = |g1xnyn| + |xny121| +2 and

|xn+1)’ﬁ+1| = |xnyn| + 2|xn)’%| +3.

Proof. This follows from Lemma 1, with the g,,+| in Lemma 2 playing the role of g; in Lemma 1. One
needs to know that x,,11 # yn+1. Butif x, 1 = y,11, then x,y, = x,,yﬁ, and this implies (by Lemma 1)

that x,_1y,—1 an—Wﬁ_l' O
Proposition. Let T denote the golden mean, © = (1++/5)/2 ~ 1.618. Then T— 1> cy.

Proof. In our calculation, we will make use of the Fibonacci numbers F;,, where Fy = F] = 1 and Fj,., =
F,+1+ F,, and the fact that F, /F,,+| converges to 1/7.

For n > 2, let x,,,y, be defined as in Lemma 2. Then by induction it follows that for all n > 2,
21%,Y2 = g1%,y,. By Lemma 2 and induction it follows that for all n > 2, |g1x,yu| = Fan_3 + Fan_1,
[xayal = Fan—a + Fan — 2.

Then for all n > 2,

|lg1x,y2] _ |10 Yn]| _ Fou_3+Fn
|x,,y%| |xny%| F2n72 + F2n -2

co < —>1/t=1-1,

and it follows that ¢, < 7— 1. O

3 An Open Question

It would be interesting to know the exact values of ¢, and ¢y, and inparticular whether ¢, > 0, and
whether ¢, > 0.
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