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Abstract

Analogues of van der Waerden’s theorem on arithmetic progressions are considered where the

family of all arithmetic progressions, AP, is replaced by some subfamily of AP. Specifically, we want

to know for which sets A, of positive integers, the following statement holds: for all positive integers r

and k, there exists a positive integer n = w0(k;r) such that for every r-coloring for of [1;n] there exists

a monochromatic k-term arithmetic progression whose common difference belongs to A. We will call

any subset of the positive integers that has the above property large. A set having this property for

a specific fixed r will be called r-large. We give some necessary conditions for a set to be large,

including the fact that every large set must contain an infinite number of multiples of each positive

integer. Also, no large set fan : n = 1;2; : : :g can have liminfn!∞
an+1
an

> 1.

Sufficient conditions for a set to be large are also given. We show that any set containing n-cubes

for arbitrarily large n, is a large set. Results involving the connection between the notions of “large”

and “2-large” are given. Several open questions and a conjecture are presented.

1 Introduction

An arithmetic progression of length k is a set P= fx+ id : i= 0; : : : ;k�1gwhere x and d are integers, d >

0. We call d the common difference of P. Van der Waerden’s classic theorem on arithmetic progressions
[11] says that, for each positive integer r, if the set of positive integers, Z+, is partitioned into r classes,
then at least one of the classes will contain arbitrarily long arithmetic progressions. An alternate (and
equivalent) form of van der Waerden’s theorem says that for all positive integers k and r, there exists a
least positive integer w(k;r) such that for every partition of the interval [1;w(k;r)] = f1;2; : : : ;w(k;r)g

into r classes, at least one of the classes will contain a k-term arithmetic progression. A partition of a
set into r classes is often referred to as an r-coloring of the set. So van der Waerden’s theorem can be
stated: for all positive integers r and k, there exists a positive integer w(k;r) so that for every r-coloring
of [1;w(k;r)] there exists a monochromatic k-term arithmetic progression.

Analogues of van der Waerden’s theorem may be considered, where the family of arithmetic pro-
gressions, AP, is replaced by some other family of integer sequences. That is, if r is a positive integer
and T is a family of integer sequences, we can ask whether for every r-coloring of the positive integers
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there are arbitrarily long monochromatic members of T . If T is a family that does have this property, we
say that T has the r-Ramsey property. If T has the r-Ramsey property for all r, we simply say that T has
the Ramsey property.

By van der Waerden’s theorem, if T includes all the arithmetic progressions, then T has the Ramsey
property. The Ramsey functions associated with T (i.e., the functions w0(k;r) analogous to w(k;r), but
where members of T are sought rather than members of AP) have been studied for a variety of such T

(see [3, 8, 10]).
In this paper, we wish to consider the Ramsey property for collections T that are not supersets of AP,

but rather subsets of AP. This is of interest because if T is a proper subset of AP, and T has the Ramsey
property, the conclusion to van der Waerden’s theorem is strengthened.

Of course, if T � AP is too small, it will not have the Ramsey property. For example, it is well known
that if F is any finite set of positive integers, then it is possible to 2-color the positive integers in such a
way that there do not exist arbitrarily long arithmetic progressions with common differences belonging
to F (one proof can be found in [1]; this fact is also a consequence of Theorem 2.1 below.)

On the other hand, one simple consequence (and strengthening) of van der Waerden’s theorem is that
if F is a fixed finite set of positive integers, then the family of all arithmetic progressions having common
differences in Z+ nF has the Ramsey property. In fact, it is easy to see that if m is a fixed positive integer,
then the family of all arithmetic progressions having common difference in the set mZ+ has the Ramsey
property (by van der Waerden’s theorem, every r-coloring of fm;2m; : : : ;(w(k;r))mg produces a k-term
monochromatic arithmetic progression, and this progression has common difference in mZ+.)

The examples just mentioned lead us to ask the general question: which subcollections of AP have
the Ramsey property?

For this paper, we consider those subcollections of AP which consist of all arithmetic progressions
having common differences in a given set A.

In this paper, we will call a subset A of the positive integers large if the collection T , consisting of
all arithmetic progressions having common differences in A, has the Ramsey property. A subset of the
positive integers that is not large is called small. Similarly, if T has the r-Ramsey property, we will say
that A is r-large. Thus we seek an answer to the question: which sets of positive integers are large?

Furstenberg, using dynamical systems methods, showed in [5] that every infinite cube (see definition
below) is large.

Definition. Let fa1;a2; : : : ;ang be any set of positive integers. The n-cube Q(a1; : : : ;an) is the set of all
linear combinations c1a1+ � � �+cnan such that ci 2f0;1g for all i, but where not all the ci are 0. Similarly,
the infinite cube Q(a1;a2; : : :) consists of all finite linear combinations of a1;a2; : : :, with coefficients in
f0;1g, except for 0. (Note: in the literature, an “n-cube” often refers to any translate of our Q(a1; : : : ;an);
also, 0 is often included the definition, and then our Q(a1; : : : ;an) is called a “punctured n-cube”).

More recently Bergelson and Liebman [1, Corollary 1.9] showed, using measure-preserving systems
methods and ergodic theory, that if C is any infinite cube, and p(x) is any polynomial with integer
coefficients, positive leading coefficient, and p(0) = 0, then fp(x) : x 2Cg\Z+ is large (in particular,
fp(x) : x � 1g \Z+ is large). In fact, they showed that if S is any subset of Z+ with positive upper
density, then S contains arbitrarily long arithmetic progressions with common differences of the form
p(x), x 2C.
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For an excellent exposition of some of these results and methods, see [2] and [6].
Here we give some results on large sets using completely elementary methods. In particular, we

strengthen Furstenberg’s result mentioned above by showing (Theorem 3.2 below) that if the set A

contains an n-cube for arbitrarily large n, then A is large. Our Corollary 2.1 and Theorem 2.4 below
are similar to results of Furstenberg [4, Theorem 3.2 and Lemma 3.3] which deal with recurrence in
measure-preserving systems.

2 Necessary Conditions

We begin with some conditions that are necessary for a set to be large. Of course any condition that is
necessary for 2-large sets is also necessary for large sets.

For convenience, we will often use the term “d-a.p.” to refer to an arithmetic progression whose
common difference is d. Further, if A is a set of positive integers and if P is a d-a.p., where d 2 A, we
say that P is an “A-a.p.”

Theorem 2.1. If A is 2-large, then for each positive integer m, A contains an infinite number of multiples

of m.

Proof. It suffices to show that for every positive integer m, A contains some multiple of m. By way of
contradiction, assume A contains no multiples of the positive integer n. Color the positive integers with
the coloring χ represented by the sequence 11 : : :1 00 : : :0 11 : : :1 00 : : :0 : : :, where each block of 0’s or
1’s has length n.

Let d 2 A and X = fx1; : : : ;xn+1g be a d-a.p. Since d � i(mod 2n) for some 1 � i � 2n�1, we see
that X must contain some element, a, of the form 2k1n+ j1, 1� j1 � n, as well as some element b, of the
form 2k2n+ j2, n+1 � j2 � 2n. then χ(a) 6= χ(b), so X is not monochromatic. Hence under χ there do
not exist monochromatic (n+1)-term arithmetic progressions having common difference in A. Hence A

is not 2-large.

Before stating the next theorem we adopt some notation and terminology. If I and J are intervals of
the same size having opposite color patterns (i.e., whenever x is in position i of I, and y is in position
i of J, then χ(x) 6= χ(y)), then if C is a string of 0’s and 1’s representing the color pattern of I, we say
that J has color pattern C̄. Also, if χ is a 2-coloring and I and J are intervals of the same size with color
patterns C and D, respectively, such that either C = D or C = D̄, then we say that I and J imitate each
other under χ .

Theorem 2.2. Let A = fakg
∞
k=1 be a sequence of positive integers where either

ak � 3ak�1 for k � 2 (1)

or

a1 = 1; a2 = 2; and ak � 3ak�1 when k � 3: (2)

Then A is not 2-large.
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Proof. We will prove that fakg
∞
k=1 is not 2-large whenever

a1 = 1; a2 � 2; and ak � 3ak�1 when k � 3: (3)

This is sufficient for the theorem since (2) is a special case of (3), and any A satisfying (1) is a subset of
some A0 satisfying (3).

Let A = fakg satisfy (3). Then for each k � 3, ak can be expressed uniquely in the form

ak =
k�1

∑
j=1

c(k)j a j; (4)

where the c(k)j are defined recursively as follows: (i) c(k)k�1 is the largest positive integer such that ak �

(c(k)k�1 +1)ak�1; (ii) if k � 4, then for each j = 2; : : : ;k�2, once c(k)k�1;c
(k)
k�2; : : : ;c

(k)
j+1 have been defined,

define c(k)j to be the largest integer such that

ak �

 
k�1

∑
i= j+1

c(k)i ai

!
+(c(k)j +1)a j;

(iii) finally, c(k)1 is defined so that ak = ∑
k�1
i=1 c(k)i ai. For k = 2, set c(k)1 = c(2)1 = a2. It then follows from

(3) that c(k)i � 2 for all k � 2 and all 1 � i � k� 1. Thus, for each k � 2, we can partition [1;ak] into
subintervals:

B(k)(k�1;1) : : :B(k)(k�1;c(k)k�1)B
(k)(k�2;1) : : :B(k)(k�2;c(k)k�2) : : :

: : :B(k)(1;1) : : :B(k)(1;c(k)1 );

where jB(k)(i; j)j= ai for 1� i� k�1, 1� j � c(k)i , and where the subintervals are listed such that each
subinterval B precedes subinterval B0 when the members of B are less than the members of B0.

Let χ be the 2-coloring of the positive integers defined by: (i) χ(1) = 1; (ii) once [1;a1]; : : : ; [1;ak�1]

have been colored, color [1;ak] by coloring the B(k)(i; j) as follows:

χ(B(k)(i; j)) =

(
Ci if j is odd
C̄i if j is even

where Ci denotes the color pattern for [1;ai].
We show that under χ there is no 5-term monochromatic am-a.p. for any m. Let m > 0 be fixed and

let fx1; : : : ;x5g be a 5-term am-a.p. Let k be the smallest positive integer such that k > m and x1 2 [1;ak].
We consider three cases.

Case 1. x1 2 B(k)(i; j) where 1 � i � m�1 and 1 � j � c(k)i . Let

S =
[
fB(k)(i; j) : 1 � i � m�1;1 � j � c(k)i g:
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Then jSj= ∑
m�1
i=1 c(k)i ai. By the way c(k)m is defined, we have

ak �

 
k�1

∑
i=m+1

c(k)i ak

!
+(c(k)m +2)am:

Hence, using (4), 2am � jSj. Therefore x3 =2 S.
We consider two subcases. In case x2 2 S, then x3 and x4 both belong to [ak + 1;ak + 2am]. Hence,

by the definition of k it follows that x3 and x4 both belong to an interval that imitates B(m+1)(m;1)[
B(m+1)(m;2). Then from the definition of χ , χ(x3) 6= χ(x4). In case x2 =2 S, then by the same reasoning
we have that χ(x2) 6= χ(x3). Thus, in either subcase, fx1;x2;x3;x4g is not a 4-term monochromatic
am-a.p.

Case 2. x1 2 B(k)(m; j) for some j, 1 � j � c(k)m . Now am � ak �∑
k�1
i=m c(k)i , so that m � jSj. Therefore

x2 2 S, so by Case 1 fx2;x3;x4;x5g cannot be monochromatic.

Case 3. x1 2 B(k)(i; j) where m+ 1 � i � k� 1 and 1 � j � c(k)i . The block B(k)(i; j) imitates [1;ai]

under χ; i.e., it imitates

B(i)(i�1;1) : : :B(i)(i�1;c(i)i�1) B(i)(i�2;1) : : :B(i)(i�2;c(i)i�2) : : :

: : :B(i)(1;1) : : :B(i)(1;c(i)1 ):

Hence by Cases 1 and 2 we may assume x1 belongs to a sub-block of B(k)(i; j) that imitates B(i)(r; j)

where m < r � i�1. If r > m+1, then we can repeat this argument, so that by a simple induction proof
we may assume that x1 belongs to a block B� that imitates [1;am+1] under χ . This means that we can
assume k = m+1, and we’re done by Case 1 and Case 2.

We have shown that in all cases, there is no 5-term monochromatic am-a.p. for any m, so that A is
not 2-large.

The next theorem shows that we can weaken the hypothesis of Theorem 2.2 from ai � 3ai�1 to
ai � 2ai�1, if we make the additional assumption that ai�1 divides ai for all i.

Theorem 2.3. If A = faig
∞
i=1 is an increasing sequence of positive integers where ai divides ai+1 for all

i, then A is not 2-large.

Proof. Define a 2-coloring χ on the set of positive integers recursively, as follows. First let χ(x) = 1 for
all x 2 [1;a1]. Once χ has been defined on [1;ai], we define χ on [1;ai+1] by χ(x) 6= χ(x�ai) for each
x 2 [ai +1;ai+1].

First note that, from the way χ is defined on [ai+1;ai+1], for each i� 1 there is no 2-term monochro-
matic ai-a.p. contained in [1;ai+1].

Now assume j > i+ 1 and that fx1;x2;x3g is a monochromatic ai-a.p. that is contained in [1;a j].
Since ai+1 divides a j, we see that every subinterval of [1;a j] of the form [kai+1 +1;(k+1)ai+1], k � 1,
imitates [1;ai+1]. Hence, since there is no 2-term monochromatic ai-a.p. in [1;ai+1], neither of the pairs
fx1;x2g and fx2;x3g could be in any one interval [kai+1 + 1;(k+ 1)ai+1]. This implies that x3 � x1 >

ai+1 � 2ai, a contradiction.
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We have shown that for each i � 1 and each j � 1, there is no 3-term monochromatic ai-a.p. with
respect to χ , which is contained in [1;a j], which proves the theorem.

The next theorem, important in proving many subsequent results, shows that finite unions of small
sets cannot be large.

Theorem 2.4. If A = A1[�� �[An and A is large, then some Ai is large.

Proof. By an obvious induction argument, it suffices to prove the result for n = 2. So let A = B[C, and
assume neither B nor C is large. Since B is not large, there exist positive integers r and k1, and some
r-coloring ρ of Z+, under which there is no monochromatic k1-term B-a.p. Likewise, there exist positive
integers s and k2, and an s-coloring σ of Z+, under which there is no monochromatic k2-term C-a.p.

Define χ to be the rs-coloring of Z+ given by χ(n) = (ρ(n);σ(n)). Let k = maxfk1;k2g. Let X

be any k-term a.p. that is monochromatic with respect to χ . Then X must also be monochromatic with
respect to each of the colorings ρ and σ . Hence X must have common difference lying outside B[C.
Hence B[C is not large.

Corollary 2.1. Let c > 1 be a fixed real number. Let A = faig
∞
i=1 be an increasing sequence of positive

integers such that ai � cai�1 for all but a finite number of i � 2. Then A is not large.

Proof. Consider first the case in which ai � cai�1 for all i � 2. Let n be such that cn � 3. For each
i = 1; : : : ;n, let Ai = fa jn+1 : j = 0;1;2; : : :g. For each i and each j � 1, a jn+i � 3a( j�1)n+i. Hence by
Theorem 2.2 each Ai is not 2-large. Since A = A1[�� �[An, by Theorem 2.4, A is not large (by the proof
of Theorem 2.4, A is not 2n-large).

To complete the proof, let m� 2 be such that ai � cai�1 for all i�m. By the above case, fam�1;am; : : :g

is not large. By Theorem 2.1, fa1; : : : ;am�2g is not large. Hence, by Theorem 2.4, A is not large (by the
proof of Theorem 2.4, it is not 2n+1-large).

Remarks. By Theorem 2.4 it is obvious that Corollary 2.1 can be extended to any set A = B0[�� �[Bn

having the property that for each k = 0; : : : ;m, there exists a ck > 1 such that Bk = fbk;i : i = 1;2; : : :g
with bk;i � ckbk;i�1 for i � 2. For example, let f fn : n � 1g be the set of Fibonacci numbers. It is easy to
show that for each k � 0 there exists a ck > 1 such that for all n � 2, fn + k � ck( fn�1 + k) (when k = 0
we can take ck = 3=2). Hence if m is a fixed nonnegative integer, the set

S
∞
n=1[ fn; fn +m] is not large.

Although the complement of a small set is large (by Theorem 2.4), the complement of a large set
need not be small. For example, by the work of Bergelson nd Leibman, A = fn2g and B = f2n2g are
both large sets, but since B � Z+ nA, we have that Z+ nA is large.

We note that if A and B are small sets, then the proof of Theorem 2.4 does not necessarily give the
“best” (i.e., the least) value of n such that A[B is not n-large. For example, let m � 3 be odd and let
A = faig be an increasing sequence of positive multiples of m such that ai�1 divides ai for all i � 2. By
Theorem 2.2 (or Theorem 2.3), A is not 2-large. Now let B be the set of all positive integers n such that
m - n. By Theorem 2.1, B is not 2-large. Hence, according to Theorem 2.4, A[B is not 4-large. However,
by the following result, we can make the stronger statement that A[B is not 3-large.

Before proceeding we define, for m > 1, a k-term a.p. (mod m) to be an increasing sequence of
positive integers fxig

k
i=1 such that for some d 2f1;2; : : : ;m�1g, xi�xi�1 � d (mod m) for all i= 2; : : : ;k.

Denote by (AP)m the family of all a.p.’s (mod m). In [10] it was shown that if m is odd and A is a finite
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set of multiples of m, then the family A�[ (AP)m does not have the 3-Ramsey property, where A� is the
family of all A-a.p.’s. The next proposition extends this result to certain cases in which A contains an
infinite number of multiples of m.

Proposition 2.1. Let m � 3 be odd and let A = faig be a sequence of positive integers such that mja1

and ai�1jai for i � 2. Let A� be the family of all A-a.p.’s. Then A�[ (AP)m does not have the 3-Ramsey

property.

Proof. We give a 3-coloring χ of the positive integers, and show that under χ there is no monochromatic
m-term a.p. (mod m) and no monochromatic 3-term ai-a.p. for all i.

Let S1 = [1;dm=3e], S2 = [dm=3e+1;d2m=3e], and S3 = [d2m=3e+1;m]. Denote by C1 the string of
length m representing the coloring defined by

C1(x) =

8><
>:

1 if x2S1

2 if x2S2

3 if x2S3:

Denote by C2 the string of length m representing the coloring defined by

C2(x) =

8><
>:

3 if x2S1

1 if x2S2

2 if x2S3:

If I is an interval of length m and χ is a coloring such that χ(I) =C1, define χ̄(I) to be the coloring C2;
and if χ(I) =C2, define χ̄(I) to be the coloring C1.

We now define the coloring χ recursively as follows: (i) for each x 2 [1;ai], let x0 be the element
of [1;m] such that x � x0 (mod m), and let χ(x) = C1(x0); (ii) once [1;ai�1], i � 2, has been colored, we
color [ai�1 +1;ai] as follows:

χ([kai�1 +( j�1)m+1;kai�1 + jm]) = χ̄([(k�1)ai�1 +( j�1)m+1;(k�1)ai�1 + jm]);

for 1 � k � (ai=ai�1)�1 and 1 � j � ai�1=m.
Note that, from elementary group theory, since m � 3, any m-term a.p. (mod m) contains at least one

element from each of S1, S2, and S3. Hence there is no m-term monochromatic a.p. (mod m).
Now assume that fx;yg is monochromatic with y� x = ai. Consider the partition of the positive

integers Z+ =
S

∞
j=1 B j, where B j = [( j� 1)ai+1 + 1; jai+1]. Note that, by the way χ is defined, x and

y cannot be monochromatic and lie in the same B j. Thus, y and y+ai do lie in the same B j, and hence
χ(y) 6= χ(y+ai). That is, there is no 3-term monochromatic ai-a.p., and the proof is complete.

Corollary 2.2. Let m � 3 be odd and let B be the set of all positive integers not divisible by m. Let

A = faig be an increasing sequence of positive multiples of m such that ai�1jai for i � 2. Then A[B is

not 3-large.

Proof. This is immediate from Proposition 2.1 since each B-a.p. is a member of (AP)m.

7



Remark. Corollary 2.2 follows from Proposition 2.1 by the fact that A�(m), the set of all arithmetic
progressions having common differences which are not multiples of m, is a subset of the set (AP)m. On
the other hand, there are examples showing that we cannot always replace the collection (AP)m by the
collection A�(m) and expect the Ramsey properties to be unaffected. For example, in [9] it was shown
that if D is the set of all arithmetic progressions with common difference 2, then the family (AP)2 [D

has the 3-Ramsey property. In contrast, by Theorem 2.1, we see that A�(2)[D does not even have the
2-Ramsey property, i.e., A = f2n�1 : n 2 Zg[f2g is not 2-large. In fact, B = f2n�1 : n 2 Z+g[f2n :
n � 0g is not 2-large, since B contains no multiples of six.

3 Some Positive Results

In this section we give some sufficient conditions for a set to be large.

Lemma 3.1. For each positive integer r, if A is r-large and F is finite, then AnF is r-large.

Proof. It suffices to show that A n fag is r-large for each a 2 A. Assume that this is not the case. Then
there is an a0 2 A, an r-coloring f of Z+, and a k 2 Z+ such that there is no monochromatic k-term (An

fa0g)-a.p. Hence, under f , there are arbitrarily long monochromatic a0-a.p.’s. By Theorem 2.1, ma0 2 A

for some m > 1. Under f , there are arbitrarily long monochromatic ma0-a.p.’s, a contradiction.

Theorem 3.1. Let p(x) be a polynomial with integer coefficients and leading coefficient positive. If x+a

divides p(x) for some integer a, then (range(q) = fp(x) : x = 1;2; : : :g)\Z+ is large.

Proof. Let p(x) = (x+ a)s(x). Let q(x) = p(x� a). So q(x) = xs(x� a). By the result of Bergelson
and Leibman mentioned in Section 1, range(q)\Z+ is large. If a � 0 then range(q) � range(p), so
range(p)\Z+ is large. If a > 0, then range(p) = range(q) nF , where F is finite, so by Lemma 3.1
range(p)\Z+ is large.

Remarks. does the converse of Theorem 3.1 hold? That is, if no x+ a divides the polynomial p(x),
does it follow that fp(n) : n 2 Z+g is not large? It is easy to see (by Theorem 2.1) that the answer is
yes if p(x) has degree one, for if p(x) = ax+ b, where b is not a multiple of a, then the range of p(x)

contains no multiples of a. We do not know the answer for the general case. Another question: is it true
that whenever the range of a polynomial p(x) is not large, then the range fails to contain multiples of
some positive integer m? It would be interesting to know whether the range of the polynomial f (x) =

(x2 �13)(x2 �17)(x2 �221) is large, because although f (x) has no linear factors, its range contains an
infinite number of multiples of every positive integer m (using the properties of the Legendre symbol,
one can show that the congruence f (x)� 0(mod m) is solvable for all m).

Theorem 3.2. If A is a set of positive integers containing n-cubes for arbitrarily large n, then A is large.

Proof. The proof makes use of the Hales-Jewett theorem [7], for which we need some notation. Let k

be any fixed positive integer, and let B = f0;1; : : : ;k� 1g. For a positive integer n, we consider the set
Bn of n-tuples with entries from B and the set (B[λ )n of n-tuples with entries from B[λ , where λ is
indeterminate.
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Let w(λ ) denote an element of (B[λ )n in which at least one λ occurs. For each i, 0 � i � k�1, let
w(i) denote the result of replacing each occurrence of λ in w(λ ) by i.

A combinatorial line in Bn is any set L having the form fw(0);w(1); : : : ;w(k�1)g for some n-tuple
w(λ ) in (B[λ )n, where w(λ ) has at least one occurrence of λ .

The Hales-Jewett theorem asserts that for any given positive integers k and r, with B = f0;1; : : : ;k�
1g, there exists a positive integer n such that for every r-coloring of Bn there is a monochromatic combi-
natorial line.

Now let r be a positive integer and let χ be any r-coloring of the positive integers. We assume that
A contains arbitrarily large cubes, and we wish to show that for each k there are monochromatic k-term
A-a.p.’s. Let k be given, and choose n according to the Hales-Jewett theorem so that every r-coloring
Bn, where B = f0; : : : ;k�1g, has a monochromatic combinatorial line. Since A contains arbitrarily large
cubes, A contains an n-cube, say Q(a1; : : : ;an).

Now define an r-coloring σ , of Bn, as follows: for each (x1; : : : ;xn) in Bn, let

σ(x1; : : : ;xn) = χ(x1a1 + x2a2 + � � �+ xnan):

By the choice of n, there exists a combinatorial line L = fw(0); : : : ;w(k�1)g that is monochromatic
with respect to σ . To simplify our notation, we may assume that w(λ ) = (x1;x2; : : : ;xs;λ ;λ ; : : : ;λ ),
where s � n�1, all the xi’s belong to B, and there are n� s occurrences of λ . Then for 0 � i � k�1,

σ(w(i)) = σ(x1;x2; : : : ;xs; i; i; : : : ; i) = χ(x1a1 + � � �+ xsas + i(as+1 + � � �+an)):

Writing a = x1a1 + � � �+ xsas and d = as+1 + � � �+ an, we have that d 2 Q(a1; : : : ;an) � A, and χ

is constant on the k-term arithmetic progression P = fa+ id : 0 � i � k� 1g. Hence we have shown
that for each r > 0 and k > 0, every r-coloring of the positive integers contains a monochromatic k-term
A-a.p.

In the next corollary, the symbol frg denotes the fractional part of the real number r, i.e., frg =

r�brc.

Corollary 3.1. (a) Let α > 0 be irrational and let ε > 0. Then A = fi 2 Z+ : fiαg< εg is large.

(b) Let α > 0. Then A = fbnαc : n 2 Z+g is large.

(c) If A is a set of positive integers containing arbitrarily long intervals, then A is large.

Proof. (a) Since ffiαg : i 2 Z+g is dense in the unit interval, for each k � 1 we may choose ak 2 A

such that fakαg < ε=2k. Let n be a given positive integer. Then f(a1 + � � �+ an)αg < ε , so A

contains the infinite cube Q(a1;a2; : : :). By Theorem 3.2, A is large.

(b) The proof is essentially the same as the proof of (a).

(c) The set must contain an infinite cube (see [5, pp. 171]).
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By Theorem 3.1, the range of any polynomial with integer coefficients, that is divisible by x+a for
some a, is large. However, it is easy to find a large set A with the property that for each polynomial p(x)

with integer coefficients, A does not contain all but finitely many elements of range(p) (we say “all but
finitely many” because of Lemma 3.1). This follows easily from the following more general result.

Proposition 3.1. If R1;R2; : : : is a sequence of infinite subsets of Z+, then there exists a large set A such

that the complement of A contains infinitely many elements of every Ri.

Proof. We define B= fb1;b2; : : :g as follows. Let b1 and b2 be arbitrary elements of R1 such that b2 > b1.
Now assume j � 3. Once b1; : : : ;b j�1 have been defined, choose b j such that b j 2 Ri and b j�b j�1 >

b j�1 � b j�2. Then the sequence fb j : j = 1;2; : : :g contains infinitely many members of each Ri. Also,
b j � b j�1 goes to infinity with j. Hence, if A = Z+ n fb j : j = 1;2; : : :g, A contains arbitrarily long
intervals, hence is large by Corollary 3.1(c).

The following theorem provides some simple ways of obtaining large sets from other large sets. The
proofs are relatively straightforward and are omitted.

Theorem 3.3. (a) If A is large and m is a positive integer, then mA is large.

(b) If A is large and m is a positive integer, then Anfx : m 6 jxg is large.

(c) If A is r-large, and if all elements of A are multiples of the positive integer m, then 1
m A is r-large

(hence, A large implies 1
m A large).

We have yet to see an example of a set A that is r-large for some r � 2, but that is not large. We make
the following conjecture.

Conjecture. If A is 2-large, then A is large.

We have some partial results concerning the above conjecture. In the following theorem, we use the
symbol An, where A is a set of positive integers, to denote the set of products fx1x2 : : :xn : xi 2 Ag.

Theorem 3.4. If A is 2-large, then An is 2n-large.

Sketch of Proof. We prove this by induction on n. For the induction step, let χ be a 2n+1-coloring of the
positive integers, using the colors 1;2;3; : : : ;2n+1. Define the 2-coloring λ on Z+ by

λ (x) =

(
a if χ(x) 2 [1;2n]

b if χ(x) 2 [2n +1;2n+1]:

Corollary 3.2. If A is 2-large and is closed under multiplication, then A is large.

4 Remarks and Questions

We do not know if Theorem 2.4 is still true if we replace “large” with “r-large”. In particular, if A[B is
2-large, must it follow that at least one of A or B is 2-large? We remarked in Section 2 that, by Theorem
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2.1, the set f2n�1 : n� 1g[f2n : n� 0g is not 2-large. We would like to know if f2n�1 : n� 1g[fn! :
n � 1g (an example not covered by Theorem 2.1) is 2-large (it is not 4-large by Theorem 2.2 and the
proof of Theorem 2.4).

We also ask: which sets A have the property that some translation of A is large, i.e., for which A does
there exist an integer x such that x+A = fx+a : a2 Ag is large? By the result of Bergelson and Leibman,
the range of any polynomial p(x) has this property, since p(x)� p(0) sends 0 into 0. Also, it follows
from Theorem 2.4 that any set A with bounded gaps has this property since then Z+ =

Ss
i=0(A+ i) for

some s. It would be interesting to know if some translation of the set of primes is large (by Theorem 2.1,
it would have to be an odd translation).

Let p(x) be any polynomial with integer coefficients, positive leading coefficient, and p(0) = 0, and
let A be a large set. Must fp(x) : x 2 Ag be large? In particular, must fx2 : x 2 Ag be large?
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