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Abstract

Some results of geometric Ramsey theory assert that if F is a finite field (respectively, set) and n

is sufficiently large, then in any coloring of the points of Fn there is a monochromatic k-dimensional

affine (respectively, combinatorial) subspace (see [9]). We prove that the density version of this result

for lines (i.e., k = 1) implies the density version for arbitrary k. By using results in [2, 6] we obtain

various consequences: a “group-theoretic" version of Roth’s Theorem, a proof of the density assertion

for arbitrary k in the finite field case when jF j= 3, and a proof of the density assertion for arbitrary k

in the combinatorial case when jF j= 2.

1 Results

In this section we will state and discuss the main results and prove some corollaries. The proofs of the
main results are in the following section. Throughout q denotes a prime power.

Let Fq be the field with q elements and let V be an n-dimensional vector space over Fq. For each
positive integer k and positive real number ε let n(ε;k;q) denote the smallest integer (if one exists) such
that

n = dimFq V � n(ε;k;q); A �V; jAj> εjV j;

imply that A contains an affine k-space. (By an affine k-space we mean any translate of a k-dimensional
vector subspace; the purist will note that we only use the structure of V as an affine space.)

The “Affine Line Conjecture" is the assertion that n(ε;1;q) exists for all ε > 0 and all q. The existence
of n(ε;k;q) would be a density version of the results in [9] on Ramsey theorems in geometric contexts.

The main assertion of this paper is that if, for a fixed q, n(ε;1;q) exists for all ε > 0, then n(ε;k;q)

exists for all k and all ε > 0. We will also reinterpret this result in the context of “combinatorial" k-spaces
and “lattices" in abelian groups. We include a number of corollaries and remarks.

(It is not hard to see that if n(ε;1;q) exists for all ε > 0 and all q, then n(ε;k;q) exists for all k;ε , and
q. Indeed, if ε;k, and q are given, let F be the extension of Fq of degree k. An affine line in an F-vector
space is a k-space over Fq if we “restrict scalars" to Fq; from this it is easy to see that the existence of
an affine line in a large enough subset of Fn implies the existence of an affine k-space in a large enough
subset of Fkn

q .)

1



Theorem 1. Suppose that Fq is a fixed finite field and that n(ε;1;q) exists for all ε > 0. Then n(ε;k;q)

exists for all ε > 0 and all k.

Corollary. The integers n(ε;k;2) and n(ε;k;3) exist for all ε > 0 and all k.

Proof of the corollary. Any two-element subset of an F2 vector space is an affine line so it is trivial that
n(ε;1;q) exists. The theorem then implies that n(ε;k;2) exists for all k (see the corollary to Lemma
1 in [2] for a different proof of the existence of n(ε;k;2)). The existence of n(ε;k;3) follows from
Theorem 1 and the existence of n(ε;1;3) which is the central result of [2]. This finishes the proof of the
corollary.

A set fx1; : : : ;xkg of the elements in an abelian group G is said to be independent if c1x1+c2x2+ � � �=

ckxk = 0 implies that cixi = 0 for each i. An (m;k)-lattice in an abelian group G is a set of the form

M = fa+ c1x1+ � � �+ ckxk : ci = 0;1; : : : ;m�1g;

where a is an element of G and the xi are independent. If V is a vector space over a finite field, then by
an (m;k)-lattice in V we mean an (m;k)-lattice in its underlying additive group.]

Let n0(ε;k;q) denote the smallest integer (if one exists) such that if

n = dimFq V � n0(ε;k;q); A �V; jAj> εjV j;

then A contains a (3;k)-lattice.

Theorem 2. n0(ε;k;q) exists for all ε > 0, k, and q.

Corollary. For each ε > 0 and positive integer k there is an integer m(ε;k) such that if G is any finite

abelian group with more than m(ε;k) elements and A is any subset of G with more that εjGj elements,

then there is a (3;k)-lattice inside A.

Proof of the corollary. Let k and ε be given. Choose by Szemerédi’s theorem [10] a large enough n so
that any subset of f1;2; : : : ;ng with more than εn elements contains an arithmetic progression with 3k

terms. Choose m(ε;k) large enough so that any finite abelian group G with more than m(ε;k) elements
must contain either a cyclic subgroup H of order at least n, or a subgroup H which is the direct product
of at least n0(ε;k; p) cyclic groups of order p for some prime p < n.

Now let G be a finite abelian group with more than m(ε;k) elements and let A be a subset of G

with jAj > εjGj. Let H be the subgroup whose existence is guaranteed by the choice of m(ε;k). Then
jA\a+Hj> εjHj for some coset a+H of H. If H is cyclic, then A�a contains the set

fa0+ c1d+ c2(3d)+ � � �ck(3k�1d) : ci = 0;1;2g;

where d is the difference of the arithmetic progression whose existence is guaranteed by the choice of n

above. If H is the direct product of at least n0(ε;k;q) cyclic groups of order p, then A�a contains

fa0+ c1x1+ � � �+ ckxk : ci = 0;1;2g

for an independent set of xi. Thus in either case A contains a (3;k)-lattice and we are finished.
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Remarks. (1) Roth’s special case of Szemerédi’s theorem asserts that if n is sufficiently large and A is
a subset of f1;2; : : : ;ng with more than εn elements then A contains a set of the form fa;a+ x;a+2xg.
This is equivalent to the case k = 1 of the corollary in the case in which G is cyclic. Indeed, it is not hard
to check that one has

m(ε;1)� n �
1
2

m
�

ε

2
;1
�
+1

(to verify the second inequality consider subsets of the “first half" of a sufficiently large cyclic group).
Thus the corollary could be thought of as a group-theoretic generalization of Roth’s Theorem.

(2) Since sufficiently large groups contain large abelian subgroups [4], we could actually delete the
requirement that G be abelian in the statement of the corollary.

(3) If the Affine Line Conjecture is valid, then the results here imply the obvious “group-theoretic
generalization" of Szemerédi’s Theorem: For every ε > 0, k, and l there exists an integer m(ε;k; l) such
that if G is any finite abelian group with more than m(ε;k; l) elements and A is any subset of G with more
εjGj elements, then there exists an (l;k)-lattice in A.

Finally, we remove the algebraic structure on the underlying set, replacing Fq with an arbitrary
finite set. Thus we consider combinatorial subspaces; we briefly recall the definition (see [6] for further
details).

Let F be the finite set f0;1; : : : ; t�1g with t elements. A subset W of Fn is a combinatorial k-space

if it satisfies the following. There is a partition

f1; : : : ;ng= B0[B1[�� �[Bk

such that B1; : : : ;Bk are nonempty. There is a function f : B0 7! F . A function f̄ : Fk 7! Fn is defined by
f̄ (y1; : : : ;yk) = (x1; : : : ;xn) where

xi = f (i) for i in B0;

xi = y j for i in B j;1 � j � k:

W is the range of f̄ .
The definition is complicated, but it captures a notion of subspace when the only structure on F is

that of a finite set. We remark that the Hales-Jewett Theorem [6, 7] asserts that if n is large enough, then
in any coloring of Fn there is a monochromatic combinatorial 1-space (usually called a combinatorial
line).

Let n00(ε;k; t) be the smallest integer (if one exists) such that if

n � n00(ε;k; t); A � Fn; jAj> εjFnj;

then A contains a combinatorial k-space.

Theorem 3. Let t be fixed. If n00(ε;1; t) exists for all ε > 0, then n00(ε;k; t) exists for all ε > 0 and all k.

Corollary. n00(ε;k;2) exists for all ε > 0 and all k.

Proof of the corollary. The existence of n00(ε;1;2) is a simple consequence of Sperner’s Lemma (see [1]
or [6]).
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Remarks. (1) In [1] it is shown that if there is a fixed ε0 < 1 such that n00(ε0;1; t) exists for all t, then
n00(ε;1; t) exists for all ε > 0 and all t. The corresponding result for n(ε;1;q) is proved in [3].

(2) The existence of n00(ε;1; t) is a “density version" of the Hales-Jewett Theorem. Graham has
offered a reward for a proof of the existence (or non-existence!) of the numbers n00(ε;1;3).

2 Proofs

The following lemma contains the crucial idea underlying Theorems 1, 2, and 3.

Lemma. Let Fq be a fixed finite field and k a fixed positive integer. Assume that n(ε;1;q) exists for all

ε > 0. Then for each positive integer r, if n(1=(r+ 1);k;q) exists then n(1=r;k+ 1;q) exists. Similar

statements holds for n0(ε;k;q) and n00(ε;k; t).

Proof. We give the proof in the vector space case n(ε;k;q). The proofs for n0(ε;k;q) and n00(ε;k; t) are
entirely analogous. In the lattice case n0(ε;k;q) it is merely necessary to replace “k-space" with “(3;k)-
lattice" and “line" with “(3;1)-lattice" throughout. In the combinatorial case n00(ε;k; t) it is necessary
to replace “affine k-space" with “combinatorial k-space" and “affine line" with “combinatorial line"
throughout.

Let n0 = n(1=(r+ 1);k;q). Let e be the number of distinct k-dimensional vector subspaces of any
n0-dimensional vector space over Fq. Let δ = (qn0er2)�1 and let s = n(δ ;1;q). We claim that

n(1=r;k+1;q)� n0+ s:

To prove this we must start with a vector space V over Fq of dimension at least n0 + s. Let A be a
subset of V with

jAj> (1=r)jV j � (1=r)qn0+s:

Let W0 be a n0-dimensional subspace of V and let

V =
[

Wα

be the decomposition of V into a union of the pairwise disjoint translates (cosets) of W0. For the proof to
work in the combinatorial case it is necessary at this point to choose W0 to be the subspace consisting of
the vectors whose last s components are 0.

Let t be the number of cosets Wα such that

jA\Wα j �
1

r+1
jWα j=

1
r+1

qn0 :

There are qs cosets altogether, so

1
r
jV j< jAj=∑ jA\Wα j �

t
r+1

jWα j+(qs� t)jWα j:

This gives
qs� t > qs=r2:
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Hence there are d = qs� t > qs=r2 cosets Wα such that

jA\Wα j>
1

r+1
jWα j;

and since the dimension of W0 is n0 = n(1=(r+1);k;q) each such A\Wα must contain an affine k-space

aα +Uα ;

Where Uα is a k-dimensional vector subspace of Wo.
Since there are exactly e distinct k-dimensional vector subspaces of W0 at least d=e of the k-spaces

aα +Uα must have the form aα +U for a fixed U . Let these be

a1+U; : : : ;ah+U;

where h � d=e.
Let A0 = fa1; : : : ;ahg. Then

jA0j= h � d=e >
qs

er2 =
1

qn0er2 qn0+s = δ jV j:

Since the dimension of V is n0+ s > s = n(δ ;1;q), there must be an affine line in A0. By renumbering if
necessary we can assume that this line is fa1; : : : ;aqg.

It is now easy to check that
U 0 = (a1+U)[�� �[ (aq+U)

is an affine (k+1)-space contained in A. Since A was an arbitrary subset of V with jAj > (1=r)jV j this
shows that

n(1=r;k+1;q)� n0+ s = dimFq(V )

as claimed. This finishes the proof of the lemma.

Theorem 1 now follows immediately from the lemma by induction. Indeed, we are given in the
hypotheses of the theorem that n(ε;1;q) exists for all ε > 0. If n(ε;k;q) exists for all ε , then it exists for
ε = 1=r. By the lemma, n(ε;k+1;q) exists for all ε > 0. Theorem 1 now follows by induction on k.

The proof of Theorem 3 is identical; we merely replace n(ε;k;q) with n00(ε;k; t).
To prove Theorem 2 for odd q we first observe that n0(ε;1;q) exists for all ε > 0 as a consequence of

the main result in [2]. For this case Theorem 2 follows from the lemma and induction as above.
To prove Theorem 2 for even q we observe that a (3;k)-lattice is just a (2;k)-lattice since 2 = 0 in

Fq. It then follows that n0(ε;1;q) exists since any two elements of an abelian group form a (2;1)-lattice.
The rest of the proof is as above. (An upper bound for n0(ε;k;q) for even q can also be deduced from
Lemma 1 in [2].)

Note added in proof. The lemma can be easily improve to show that n(1=r;k+ 1;q) � n(1=(r+
1);k;q)+n(1=(er2);1;q).
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