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Abstract

We apply results of [1] and [2] to obtain certain sufficient conditions (which involve arbitrarily

small “density") for the existence of a “k-transversal" of t s-block partitions of a set X . Along the way,

some questions arise of possible independent interest.

1 Introduction and definitions

In this note we prove the two theorems stated below. Section 2 contains some necessary preliminaries,
Section 3 contains the proofs, and Section 4 contains some remarks and related questions.

Definition 1. Let X be a set, and let P1; : : : ;Pt be s-block partitions of X . Then P1; : : : ;Pt separate the
points of X if for every pair of elements x;y of X , x 6= y, x and y belong to different blocks of at least one
of the partitions Pi.

Definition 2. If P = (P(1); : : : ;P(s)) is an (ordered) s-block partition of the set X , a transversal of P is
a set T of s elements of X , one element from each of the blocks P(i), 1 � i� s.

Definition 3. Let P1; : : : ;Pt be s-block partitions of a set X . a k-transversal of P1; : : : ;Pt is an s-element
subset T of X with the following two properties. 1) For each i, 1� i� t, T is either a transversal of Pi or
is contained in a single block of Pi. 2) For at least k distinct values of i, T is a transversal of Pi.

Definition 4. For s� 2, ε > 0, k � 1, P(s;ε;k) denotes the smallest positive integer (if one exists!) with
the following property. If t � P(s;ε;k) and P1; : : : ;Pt are s-block partitions of a set X which separates the
points of X , and jX j � εst , then there exists a k-transversal of P1; : : : ;Pt .

Theorem 1. P(2;ε;k) and P(3;ε;k) exist for all ε > 0 and all k � 1.

Theorem 2. Let s � 2 be fixed. If P(s;ε;1) exists for all ε > 0 then P(s;ε;k) exists for all ε > 0 and all

k � 1.
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2 Preliminaries and further definitions

Let s � 2 and t � 1 be given, let A = f1; : : : ;sg and let At be the t-fold cartesian product At = fa1 : : :at :
ai 2 A;1� i� tg.

Let P1; : : : ;Pt be s-block partitions of a set X which separate the points of X . Order the blocks of each
partition Pi in an arbitrary way, say

Pi = (P(i;1); : : : ;P(i;s)); 1� i� t:

Define the mapping g from X into At by setting, for each element x of X ,

g(x) = a1 � � �at ; where x 2 P(1;a1)\�� �\P(t;at):

Note that g is injective, since P1; : : : ;Pt separate the points of X .

Definition 5. Let s� 2, let A = f1; : : : ;sg, and let k; t be positive integers with t � k. Consider any s� t

matrix (ai j), 1� i� s, 1� j� t, which has the property that each column of this matrix is either constant
(perhaps different constants for different columns) or is some permutation of the elements of A (perhaps
different permutations for different columns), and such that at least k of the columns are non-constant.
Then the s rows of such a matrix, regarded as elements of At , from a k-complementary set in At .

(This definition, and the mapping g above, is essentially due to Judith Q. Longyear [8].)

Remark. Let P1; : : : ;Pt be s-block partitions of a set X which separate the points of X , and let Y = g(X).
It follows from the definition of g that there exists a k-transversal of P1; : : : ;Pt if and only if Y contains a
k-complementary set.

3 Proofs

In view of the preceding Remark, P(s;ε;k) (Definition 4) is the smallest positive integer (if one exists)
with the following property.

If A = f1; : : : ;sg, t � P(s;ε;k), and Y is any subset of At with jY j > εst , then Y contains a k-
complementary set.

To prove Theorem 1, we make use of the following known fact.

Fact. (Corollary to Theorem 1 in [2]). The proof of this fact requires the main result given in [1]. ) If
F is either the 2-element field or the 3-element field, and k � 1, ε > 0 are given, there exists an integer
n(jF j;ε;k) such that if t � n(jF j;ε;k), V is a t-dimensional vector space over F and Y is any subset of
V with jY j> εjV j, then Y contains a k-dimensional affine subspace (translate of a k-dimensional vector
subspace) of V .

Note that any k-dimensional affine subspace of V contains a 1-dimensional affine subspace in which
there are at least k nonconstant coordinates. (Here we are viewing V as F t .)

Now let s= 2 or s= 3, let k� 1, ε > 0 be given, let A= f1; : : : ;sg, and let t � n(jAj;ε;k). Let Y be any
subset of At with Y > εst = εjAt j. Then identifying A with the s-element field F , and identifying At with
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the t-dimensional vector space V over F , it follows from the Fact above and the following remark that Y

contains a 1-dimensional affine subspace with at least k non-constant coordinates, that is, Y contains a
k-complementary set.

This shows that P(s;ε;k)� n(jAj;ε;k) (for s = 2 or s = 3), and completes the proof of Theorem 1.
The proof of Theorem 2 is obtained by a slight modification of the proof of Theorem 1 in [2]. For

the sake of completeness we give the modified argument here.

Lemma. Let s � 2 and k � 1 be fixed, and assume that P(s;ε;1) exist for all ε > 0. Then for each

positive integer r, the existence of P(s;1=(r+1);k) implies the existence of P(s;1=r;k+1).

Proof. Let A= f1; : : : ;sg, let no=P(s;1=(r+1);k), and let e be the number of distinct k-complementary
sets in Ano. Let ε 0 = 1=(er2), and let nι = P(s;ε 0;1). We now claim that P(s;1=r;k+1)� no+nι .

To see this, let Y be any subset of Ano+nι with jY j> 1=r � sno+nι . We need to show that Y contains a
(k+1)-complementary set.

For each z 2 Anι , let Wz denote the set Ano�fzg. Then

Ano+nι = [fWz : z 2 Anιg:

Note that if jY \Wzj> 1=(r+1) �sno, then by the definition of no, Y must contain a k-complementary
set.

Let u denote the number of elements z in Anι such that jY \Wzj � 1=(r+1) � sno.
Then we have

1=r � sno+nι < jY j=∑ jY \Wzj � u=(r+1) � sno+(snι �u) � sno;

hence u(1�1=(r+1))< snι(1�1=r), u < snι(1�1=r2), snι=r2 < snι �u.
Therefore there are

d = snι �u > snι=r2

elements z in Anι such that
jY \Wzj> 1=(r+1) � snι ;

and each of these sets Y \Wz contains a k-complementary set

Uz�fzg;

where Uz is a k-complementary set contained in Ano.
Since there are only e distinct k-complementary sets in Ano, at least d=e of the sets Uz �fzg must

have the form U �fzg for a fixed k-complementary set U in Ano. Let these be

U �fz1g; : : : ;U �fzhg;

where h� d=e.
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Let Y 0 = fz1; : : : ;zhg. Then Y 0 is a subset of Anι with

jY 0j= h� d=e > snι=(er2) = ε
0 � snι :

Therefore Y 0 contains a 1-complementary set. Re-numbering if necessary, let this 1-complementary set
be z1; : : : ;zs.

We now have that Y contains U �fz1g; : : : ;U �fzsg, where U is a k-complementary set in Ano

and fz1; : : : ;zsg is a 1-complementary set in Anι . If U = fw1; : : : ;wsg, then Y contains the (k+ 1)-
complementary set

w1� z1; : : : ;ws� zs:

This completes the proof of the Lemma.

Theorem 2 now follows from the Lemma by induction on k. Indeed, the hypothesis of Theorem 2 is
the case k = 1. For the induction step, if P(s;ε;k) exists for all ε > 0 then it exists for all ε = 1=(r+1),
r � 1, hence by the Lemma P(s;1=r;k+1) exists for all r � 1, hence P(s;ε;k+1) exists for all ε > 0.

4 Remarks and questions

A combinatorial line T in At (where A = f1; : : : ;sg) is a 1-complementary set of a very special type.
When the t-tuples of T are regarded as the rows of an s� t matrix, then each column of this matrix is
either constant or is a single fixed permutation of the elements of A.

The celebrated Hales-Jewett theorem [7] states that if s;r are given there exists a smallest positive
integer HJ(s;r) such that if A = f1; : : : ;sg,t � HJ(s;r), and At is r-colored (that is, a mapping c : At 7!

f1; : : : ;rg is given) then there exists a combinatorial line T in At which is monochromatic (that is, the
mapping c restricted to T is constant.)

The only known upper bounds for the function HJ(s;r) are extremely large, to say the least. (See [3–
6] for elegant proofs, generalizations and applications of the Hales-Jewett theorem, and for further dis-
cussion of these bounds. See also the numerous references in the excellent survey article [3].)

Let f (s;r) denote the smallest positive integer such that if A = f1; : : : ;sg, t � f (s;r), and At is r-
colored then there exists a 1-complementary set in At which is monochromatic. Perhaps a “reasonable"
(primitive recursive?!) upper bound can found for the function f (r;s).

One could also ask for bounds on the function f (s;r;k), the smallest positive integer such that if
A = f1; : : : ;sg, t � f (s;r;k), and At is r-colored, there exists a k-complementary set in At which is
monochromatic.
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