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Abstract

The classical theorem of Schmidt on locally finite group extensions may be stated as follows: If
¢ : G— H is a homomorphism of the group G onto the locally finite group H with locally finite kernel,
then G is locally finite.

In this paper we prove the exact analogue of this theorem for semigroups. Then in the last section
we give several consequences, including the well-known theorem of Shevrin which states that a band
of locally finite semigroups is locally finite, and the theorem of Green and Rees on the equivalence of

Burnside’s problem for groups with “Burnside’s problem for semigroups".

1 Introduction

The whole of this paper is based on Lemma 2 below, which is essentially combinatorial. The methods
are completely elementary in nautre, and the paper is self-contained, except for a few facts used in the

last two sections. The theorem we wish to prove is the following.

Theorem. If ¢ : S+ T is a homomorphism of the semigroup S onto the locally finite semigroup T such
that e~ is a locally finite subsemigroup of S for each idempotent element e of T, then S is locally finite.

First we note that it is sufficient to consider the case where T is finite. For suppose the theorem
is true in this case, and let @ : S — T’ be a homomorphism with all the required properties onto an
arbitrary (possibly infinite) locally finite semigroup 7". Let A be a finite subset of S, and let (A) denote
the subsemigroup of S generated by A. It is required to show that (A) is finite. Now (A¢@) = T is a finite
subsemigroup of T, since 7’ is locally finite, hence all we have to do is to restrict ¢ to T¢~! to get a
homomorphism ¢’ : T¢~! — T onto a finite semigroup T'; furthermore ¢’ has all the required properties.
Hence by our assumption, T ¢! is locally finite. But A C T !, hence (A) is finite, as required.

In Sections 2 throug 4 below, we shall prove the theorem for the special cases where T is a (finite)
group, group with zero, null semigroup, simple semigroup, or O-simple semigroup. (For definitions see
below). In Section 5 we give some consequences to the theorem.

Assuming the truth of the theorem for the special cases listed above, the general case follows by
induction on |T|, the order of T, as follows. For |T| = 1, the theorem is trivial. Let T be a finite
semigroup and suppose the theorem holds for all semigroups 77 with |T’| < |T|. If T has no proper non-

zero ideals, then 7 is either null, simple, or 0-simple, and S is then locally finite by the appropriate special



case. If T has a proper non-zero ideal M, then let T’ = T /M, the Rees factor semigroup (for definition,
see below), let ¥ be the natural mapping of T upon 7', and let ¢ = Q. Since ois a homomorphism of

Supon T, and |T'| < |T|, all we have to verify is that ec !

is locally finite for each idempotent element
e of T’; for then by the inductive assumption S is locally finite. Thus let ¢ be an idempotent element of
T'. If e #0, then ec™' = (ey™ o~ =e@~!, and e¢~! is locally finite by hypothesis. If e = 0, then
00! = (0y o ' =Mp~', and Me~! is locally finite by the inductive assumption.

In the remainder of the proof (and above), the following definitions are used. If a semigroup S
contains an element 0 such that Os = s0 = 0 for all s € S, S is a semigroup with zero. In case S\ {0} is
a group, S is a group with zero. A subsemigroup M of S is an ideal is SMSUMSUSM C M, and is a
proper ideal if M # S. A semigroup without proper ideals is simple. A semigroup S with zero is 0-simple
if S # {0} and {0} is the only proper ideal of S. S is null if S> = {0}. Let M be an ideal of S; the Rees
Sactor semigroup of S modulo M, denoted by S/M, is defined as follows. As a set, S/M = (S\ M) U{0}.
For x,y € S, let xy denote their product in S and x *y their product in S/M. Then, by definition, xxy =0
ifxye M, xxy=xyifxy¢ M, and 0xz=zx0 =0 for all z € S/M. The mapping x — 0, x € M, x > x,
x ¢ M, is the natural homomorphism of S upon S/M.

We shall also require the following:

Let A be a subset of the semigroup S. If x € (A), then we say that x has length m (with respect to A)
if x can be written as the product of m elements (not necessarily distinct) from A and cannot be written
as the product of any smaller number of elements from A. Thus, x has length m if and only if

Mx=xx2-xp (x; €A, 1 <i<m)

Q) x=y1y2- vy, i €A, 1 <i<n)implies n > m.

If x has length m with respect to some set A, we simply write |x| = m; the paricular set A upon which
|x| depends will be clear from the context.

If x,y € (A) and |x| +|y| = |xy|, we say that x is a left segment of xy. (Here we do not allow |x| =0.)
If x,y,z € (A) and |x|+ |y| + |z] = |xyz|, we say that y is a segment of xyz. (Here we do allow |x| = 0 or
|z =0)
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In this section we prove the theorem for the case where T is a finite group. The proof is by a rather
curious contradiction. We deny the theorem and then apply a kind of sieve to produce an element whose

image under ¢ is not in the range of ¢.

Lemma. Let T be a group with identity e and let ¢ : S— T be a homomorphism of the semigroup S onto
T such that e@™" is locally finite. Let A be any finite subset of S and let m be any positive integer. Then

there exists an integer k = k(m,A) with the following properties: If x € (A), |x| = km (length with repect
toA), and g € T, then x = P(g)Q(g)R(g), where P(g),0(g),R(g) € (A), |Q(g)| = m, and (P()U)¢ # g

Sor every left segment U of Q(g).

Proof. Let x € (A), |x| = km, x = A1Az--- A, A; € (A), |Ai] =m, 1 <i<k, g€ T. We will show that
if k is taken large enough, then some A; may be chosen as Q(g). For suppose the contrary. Then for
arbitrarily large k we can find x € (A) such that |x| = km, x = AjAy--- Ay, A; € (A), JAi| =m, A; =



B:C;, |Bi|+|Ci|=m, 1 <i<k, and (B))¢ = (B|C1By)¢ = --- = (B1C) -+ By_1Cx—1By)¢® = g. Then
C1B2,C3Bs,...,Ci_1B; € e !, and since |B;| + |C;| = m, we have |C;B;11| < 2m.
Now let H be the subsemigroup of e~ generated by the finite set

{ye(A)nep~": |y| <2m}.

Then H is finite since e¢~! is locally finite. Furthermore, H depends only on A and m. Thus there exists
a number M = M(A,m) such that
Z€EH = |zl <M.

(Note we are still writing lengths with respect to the set A.)
The point of constructing H is that

W =CB,C3B3 - Cy_ 1B € H,
hence |W| < M. But then
km = |x| = [BiIWC,| < [Bi|+ W[+ |G| <M +2m,

or (k—2)m <M.
Since M does not depend on «, this is a contradiction for sufficiently large k. This proves Lemma 2.
O

Lemma. Let T be a group with identity e, and let ¢ : S — T be a homomorphism of the semigroup S
onto T such that e~ is locally finite. LetV C T, g€ T, g ¢ V. Let A be a finite subset of S, and suppose
that x € (A), x = PLO1R1, where Q) € (A), |Q1| = k(m,A).m (see Lemma 2), and (P,U1)@ ¢V for every
left segment Uy of Q1.

Then x = PiP,Q2RyR1, where Q; € (A),
Uz of Q.

Proof. Leth= (P) 'g. Since |Q;| = k(m,A).m, by Lemma 2 we have Q| = P01 R,, where O, € (A),
|Q2| = m, and (P,U,) @ # h for every left segment U, of Q. Now if U, is a left segment of Q», then
PyU; is a left segment of Q;, therefore by the hypotheses of the present lemma (PyP,U>)¢ ¢ V. But

02| =m, and (PP Uz) @ ¢ V U {g} for every left segment

also (PiP,Us) @ # g, for otherwise we would have (PU>) ¢ = (P (P_l)g = h, a contradiction. Therefore
(PP U>) @ ¢ VU {g}, as required. 0

Lemma. Let T be a finite group with identity e, and let ¢ : S +— T be a homomorphism of the semigroup
S onto T such that e@~" is locally finite. Then S is locally finite.

Proof. Let T have n elements {gj,...,8,}. Let A be a finite subset of S. In the notation of Lemma 2,
let ko = 1,k; = k(ko,A), ko = k(kok1,A),..., kn = k(kOk; - --k,—1,A). We shall show that x € (A) implies
|x| < koki - - - k. This of course means that (A) is finite, and so S is locally finite.

To prove our assertion, suppose x € (A), |x| > kok -+ -ky—1k,. We may as well assume that |x| =
k0k1 s kn—lkn~ Then

|x| = kn.(kokl . 'kn—l) = k(k()kl - -kn_l,A).(k()kl - 'kn—l);



so by Lemma 2 x = P|Q R, where Q; € (A),
segment U; of Q.

Now suppose we have x =Py --- PyQiuRy, - - - Ry, where Oy, € (A), |Om| = kok1 -+ knem = kn—m-(koki ++  ky—m—1) =
k(k()/q - -kn_m_l,A).(kokl - -kn_m), and

01| = koky ---ky—1, and (P1Q1)¢@ # g for every left

(PI"'PmUm)(p§2§ {gla"'agIn}

for every left segment U,, of Q,,.

We now use Lemma 2 to sieve out the element g, 11, and obtain
x=P - Pp1Oms1Rms1 - Ry,

where Q1 € (A), |Qm+1| = koki - -kn—m—1, and (Py -+ Ppt1) @ & {g1,- .-, &m+1 | for every left segment
Un+1 of Qpy1.

Thus after n steps we have x = P, - P,Q,R,, - -- Ry, where Oy, € (A), |Qu| = ko =1 (so that Q,, has
exactly one left segment, namely Q,), and (P;---P,0,)¢ ¢ {g1,...,8.} = T. Since ¢ is after all a

mapping of S into T, this is a contradiction, and completes the proof. O
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We now consider the cases wherer T is either a finite group with zero or a finite null semigroup.

Let S,¢,T be as in the theorem, and suppose also that 7" is a finite group with zero. Let A =
(T\ {0})@~'; then A is locally finite by Lemma 2. Also, by assumption, B = 0¢~! is locally finite.
Thus we have S = AU B, where A, B are locally finite and B is an ideal in S. It is easy to see in this case
that S is locally finite. In the case that T is a finite null semigroup, again letting B = 0¢~', we have
that B is a locally finite ideal in S and S?> C B. Here again it is easy to see that S is locally finite. We

summarize these cases as

Lemma. Let T be either a finite group with zero or a finite null semigroup, and let ¢ : S+— T be a
homomorphism of the semigroup S onto T such that e¢~" is locally finite for each idempotent element e
of T. Then S is locally finite.
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In this section we consider the remaining cases, where T is either a (finite) simple semigroup or 0-simple
semigroup.

Let T be a finite simple of finite 0-simple semigroup. Then 7 is completely simple or completely
0-simple, and it follows in a standard way ( [3]) that if a,b € T and TabT # {0}, then bTa is a finite
group or a finite group with zero. This fact will be used in what follows.

The next lemma is a variation on Lemma 2. Its proof is briefly sketched.

Lemma. Let T be a finite simple or finite O-simple semigroup, and let ¢ : S — T be a homomorphism
or the semigroup S onto T such that e~ is locally finite for each idempotent element e of T. Let A be



any finite subset of S and let m be any positive integer. Let a,b be element of A such that |ab| =2 and
T((ab)@)T # {0}. Then there exists an integer k = k(ab,m,A) with the following properties: If x € (A),
|x| = km, then x = POR where Q € (A),

Q| = m, and ab is not a segment of Q.

Proof. Assume the contrary. Then for arbitrarily large k we can find x € (A) such that |x| = km, x =
AjAy--- Ay, A; € (A), |Aj| = m, A; = B1abC;, |Bi|+ 2+ |Ci| = m, 1 < i < k. Thus x = BjaybCy, where

k—1
y = [[(bCiBis1a).

i=1

Let G = (b@)T(a@). Then G is a finite group or a finite group with zero, and so Go ! is locally finite
by Lemmas 2 and 3. But y belongs to a finitely generated subsemigroup of G@~!, hence |y| is bounded
above by a number which depends only on a,b,m, and A, hence |x| is similarly bounded. For sufficiently

large k this contradicts |x| = km. O

Lemma. Let T be a finite simple or finite 0-simple semigroup. Let ¢ : S — T be a homomorphism of the
semigroup S onto T such that e~ is locally finite for each idempotent element e of T. The S is locally
finite.

Proof. Let A be a finite subset of S. Let

B={xy:x,y €A lxy| =2,T((xy)@)T #{0}},
C= {xy 1x,y €A, |xy| = 2,T((xy)(p)T = {0}}:
D= {albl,...,apbp}.

(Note that if T is simple then C is empty.)

We now assume that (A) is infinite and proceed in two steps:

(i) We show that (A) must contain elements of arbitrarily large lengths which contain no element of
B as a segment.

(i1) Using (i), we obtain a contradiction.

(i) Let m be an arbitrary positive integer. Using the notation of Lemma 4, let

kO =m, kl = k(alblak()aA)v
ky = k(azb,kok1,A),. ..,
kp = k(apbp,k()---kp_l,A).

By finite induction, as in Lemma 2, it follows that if x € (A),

x| =ko-- -kp, then x contains a segment R,
R € (A), |R| = m, such that no element of B is a segment of R.

(ii) First suppose that 7 is simple, so that C is empty. By (i), setting m = 2, there is R € (A), |R| =2,
such that R contains no element of B as a segment, that is R ¢ B. But R € BUC, and C is empty. This
case is finished.

Now suppose that T is O-simple. By (i), for arbitrarily large m we have R € (A), |R| = m, and no
element of B is a segment of R. Then we can write R = R'y, where y = [T._, (x;yiziwi), R’ € (A), |R'| < 4,
Xi, Vi 2i, Wi €A, |yizil =2, 1 <i <t



Then y;z; € C, or T((yizi)@)T = {0}, therefore in particular (x;y;zjw;)¢@ = 0. Hence y is an element
of a finitely generated (hence finite) subsemigroup of the locally finite semigroup 0@ !, and so |y| is
bounded above. This contradicts the statement that |R| is not bounded above. This finishes Lemma 4,

and the proof of the main theorem is complete. O
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In this section we are concerned with bands of locally finite semigroups. Suppose that a semigroup S is
the disjoint union of certain subsemigroups Sy, (o € I), I an index set. Suppose further that for any pair
@, 3, of elements of / there is an element ¥ in / such that S¢Sg C Sy. Then S is a bnad of the semigroups
Se. Evidently / becomes an idempotent semigroup if we define o8 = vy if and only if S¢Sg C S, and
¢ : S — [ is a homomorphism, where x¢ = o if x € S. S is then called an I-band of the semigroups Sy .
If each Sy is locally finite, then S is called simply an /-band of locally finite semigroups.

Several people ( [4, 5, 7]) have shown idependently that an idempotent semigroup is locally finite.

Thus from this and our main theorem follows the important result of Shevrin [8].
Theorem. Any band of locally finite semigroups is locally finite.

The author received in a personal communication from B. M. Schein an extremely short and direct
proof of Shevrin’s theorem which is outlined as follows: Let A be the two-element right zero semigroup,
let B be the multiplicative semigroup {0, 1}, let C be a right zero or left zero semigroup, let D be a
rectangular band, and let E be a semilattice. It is shown that an X-band of locally finite semigroups is
locally finite, where X is successively A,B,C,D, E, and Shevrin’s theorem then follows since any band
of locally finite semigroups is an E-band of D-bands of locally finite semigroups ( [2, 3, 0]).

It is also true that any semigroup which is the union of disjoint locally finite groups is an E-band of

D-bands of locally finite groups, and thus we have the next theorem.
Theorem. A semigroup which is the union of locally finite groups is locally finite.

From this follows the theorem of Green and Rees ( [, 4]) on the equivalence of Burnside’s problem

for groups with “Burnside’s problem for semigroups":

Theorem. The following two statements are equivalent:
(1) Every group of exponent n is locally finite.

n+1

(2) Every semigroup satisfying the identity X" = x is locally finite.
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