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Abstract

For given n, k, the minimum cardinal of any subset B of [1,#n] which meets all of the k-term arith-
metic progressions contained in [1,n] is denoted by f(n,k). We show, answering questions raised
by Professor P. Erd6s, that f(1,nf) < C-n!'~¢ for some constant C (where C depends on €) and that
f(n,logn) = o(n). We also discuss the behavior of f(p?, p), where p is a prime, and we give a simple

lower bound for the function associated with Szemerédi’s theorem.

1 Introduction

Let n, k be positive integers. We define f(n,k) to be the minimum cardinal of any subset B of [1,n] which
meets all of the k-term arithmetic progressions contained in [1,n]. For example, f(9,3) = 4, since the
set B={2,5,6,7} meets every 3-term arithmetic progression contained in [1,9], and no smaller subset
B of [1,9] has this property. Professor Erd6s [2] has asked whether f(n,n€) < C-n!'~¢ for some constant
C =C(€), and whether f(n,logn) = o(n). We answer these questions below, in the affirmative. (Here we
are considering [nf]-term arithmetic progressions and [logn]-term arithmetic progressions, respectively.)

Note that [n/k] < f(n,k) for all n and k, since [1,n] contains [n,k] pairwise disjoint blocks of k
consecutive integers.

If we regard k as a constant, then Szemerédi’s theorem [3] gives a definitive statement about the
behavior of f(n, k) for large n, namely that f(n,k) = n — o(n). However, if k(n) is a function of n which

increases sufficiently rapidly with n, then it can happen that
[n/k(n)] < f(n,k(n)) < Cn/k(n) for all n,

where C is a constant.

We will show, for example, that for any fixed €,0 < € < 1,
n' "€ < f(n,nf) < (12/€)-n'"%, foralln.

On the other hand, it is not hard to constuct (using Szemerédi’s theorem) a function k(n) which goes to

infinity with n but which increases so slowly that (1/n) - f(n,k(n)) approaches 1 as n approaches infinity.



(Define n, < n3 < --- by setting n, = 1 and choosing ny so that f(n,k) > (1 — 1/k) -n for all n > ny.
Then , for each k > 2, set k(n) =k for ny <n < ngyq.)

We will show that f(n,logn) = o(n), but we do not know if f(n,logn) = O(n/logn). The most
slowly growing functions k(n) for which we can show f(n,k(n)) = o(n) are the functions k(n) =
(logn)/(loglogn)®, for € < 1.

We also discuss the behavior of f(p?,p) where p is a prime, and we give a lower bound for the
function, analogous to the van der Waerden numbers, associated with the “finite form" of Szemerédi’s

theorem.

2 Asymptotic results

Lemma. If p is prime, p> 3,1t >0, and p' <n < p'*!, then

f(n,p) <3tn/p.

Proof. First we consider the case p' <n < p'*! — p’, where t > 1. (The case t = 0 is trivial.) For each
J,0<j<t—1,let
Bj={x€[l,n]:x=i(mod p/™),1<i< p/}.

Now let a+dp’x, 0 < x < p—1, (d,p) = 1, be a p-term arithmetic progression contained in [1,7].
Then j <t — 1, since otherwise the largest term of the progression, a +dp/(p — 1), will fall outside the
interval [1,n].

We will show that this progression meets the set B;. Choose i, 1 <i < p/, so that ¢ = i (mod p’),
saya—i= spj. Next choose xg, 0 < xp < p— 1, so that s+ dxp = 0 (mod p). Then a +dpjx0 =i (mod
p/*1), which means that a + dp’xg is in B;.

We now know that ByUB; U---UB,_| meets every p-term arithemtic progression contained in [1,7].

From
B;| < p/([n/p"™']+1) < (n/p)+p’ < 2n/p,

we get
f(n,p) <|Bo|+|Bi|+---+|Bi—1] < 2tn/p.

Note that for the special case n = p, we have |B;| =n/p = p'~!, so that
fp'p) <tp .

The remaining case is p'*! — p’ <n < p'*! (t > 1). Here, we use the preceding remark to get

fln,p) < F(P™,p) < (14 1)p" <2p" <3(1=(1/p))ep' < 3tn/p. m
Theorem 1. Let k(n) be any function. Then, whenever k(n) > 4, we have

12nlogn

f(n,k(n)) < W.



Proof. For k(n) > 4, there is a prime p and a non-negative integer ¢ such that, using Bertrand’s postulate,
3<p<k(m)<2p and p'<n<pt

By the lemma, (n,k(n)) < f(n,p) < 3tn/p. Now t < (logn)/(logp), 1/p < 2/k(n) and 1/logp <
1/(logk(n) —log2) < 2/logk(n). The result follows. O

Corollary 1. Iflogn = o(k(n)logk(n)), then f(n,k(n)) = o(n).

Applications. (a) Let k(n) =n®,0 < & < 1. Then f(n,nf) < (12/€)n' ¢, for all n (Note (12/€)n' ¢ <n
implies logn > 4.)

(b) When k(n) =logn, f(n,logn) < 12n/loglogn, for all n. (Note 12/loglogn < nimplies loglogn >
4.)

(c) Letting k(n) = (logn)/(logloglogn) or the smaller function (logn)/(loglogn) for 0 < € < 1,
we get functions k(n) = o(logn) such that f(n,k(n)) = o(n). Note the corollary does not apply to
k(n) = (logn)/(loglogn).

3 Other results

Theorem 2. For every odd prime p,
f(p*p) <2p—2.

For every constant C,
p+C< f(p*p)

for infinitely many primes p.

Proof. For an odd prime p, let
B={kp:1<k<p-2}U[p’—p—1,p*-2].

Then |B| = 2p — 2 and B meets every p-term arithmetic progression in [1, pz]. Indeed, there is only one
such progression with common difference p+ 1 and it contains the element p? — p— 1. Every progression
with common difference p meets the interval p> — p — 1, p*> — 2. Finally, every progression of common
difference less than p must contain an element congruent to 0 mod p. If this element happens to be p? or
p? — p, then the given progression meets the interval [p2 —p—1,p%— 2] since p > 3. Otherwise it meets
the set {kp : 1 <k < p—2}. This proves the first assertion.

To prove the second assertion, let C be a fixed positive integer. We suppose that for all large primes p
there is a set A C [1, p?] such that
Consider the blocks B; =[ip+1,(i+1)p] fori=0,1,...,p— 1. Each B contains at least one element of

A| < p+C, and A meets every p-term arithmetic progression in [1, p?].

A. Also, each residue mod p is congruent to at least one member of A. Call a block B; “good" if BiNAis a
singleton {a} and the residue of @ mod p is unique (i.e., forall a’ € A—{a}, a Z a’ mod p). An easy count
shows that the number of good blocks is not less that p — 3C and so there must be a consecutive string
of good blocks, By+1,By+2, - - -, Byuts of length z > (p—3C)/(3C+1). Let M = 2(3C + 1) and consider
the primes p = —1 mod (M + 1)!. Note that + > M + 1 (for p sufficiently large). Let B,+;NA = {a;}



and denote the t — 1 “jumps” by j; = a;1 — a;. We claim that each j; is less than p — M. Write j = j;.
If j > p+ 1, then there are p consecutive integers which do not meet A. If j = p, then a; and a;4 are
congruent mod p. If j = p—r, for | <r <M, then j =0 mod (r+ 1) and there will thus be a missing
residue mod (r+ 1) among the elements a; in a consecutive string of r+ 1 good blocks which contains
the blocks B,.+; and B,y;+1. This implies the existence of a p-term arithmetic progression (with common
difference r+ 1) which does not meet A.

The proof is concluded with the following contradiction: We have (r —2p)p < a; — a1 = j1 + jo +
-4 ji—1 < (t —1)(p — M) which reduces to tM < p+ M. This implies ((p —3C)/(3C+1))M =2p —
6C < p+ M, which is false for p > 12C + 2. O

Theorem 3. For each €, 0 < € < 1, and each positive integer k, let g(k,€) denote the smallest positive
integer such that if m > g(k,€), [1,m] O A and |A| > €m, then A must contain a k-term arithmetic
progression. (Thus g(k,€) is the number whose existence is asserted by Szemerédi’s theorem.) Then for
every prime p and every €, 0 < € < 1,

g(p, 8) > p[(pfl)log(l/gﬂ.

Also, if € < 1/e then g(p,€) > pP for sufficiently large p. In particular,
g(p,1/3) > p? forallp>17.

(This means: for every prime p > 1, there is a subset A of [1, pP] such that |A| > %pp and A contains no

p-term arithmetic progression.)

Proof. For a given positive integer n, let A be the set of all integers x in [0, p" — 1] such that when x is
expressed as an n-digit p-ary number, none of the n digits is 0. Then A contains no p-term arithmetic
progression. (By considering the first non-zero digit in the p-ary form of the common difference of a
given p-term arithemtic progression, one easily sees that some term of the progression contains a zero in
p-ary form.) Clearly |A| = (p—1)". Thus by the definition of g(k, €), if (p—1)" > ep”, then g(p, €) > p".
Now if n < (p—1)log(1/€), then nlog(1+1/(p—1)) <n/(p—1) <log(1/¢€), so nlog(p/(p—1)) +
loge < 0,0rep™ < (p—1)", sothat g(k,&) > p". Taking n = [(p— 1)log(1/€)] we get

g(p7 8) > p[(pfl)log(l/gﬂ.

Finally, if € < 1/e then € < ((p—1)/p)? for large p, so that (p — 1)? > ep? and g(p,€) > pP. For
€ = 1/3, the inequalities hold for all p > 7. (In the same way, if £ < 1/e* then g(p,€) > p*? for large
p.) L

4 Remarks

1. Theorem 1 shows that the functions k(n) = (logn)/g(n), where g(n) = o(loglogn), grow rapidly
enough that f(n,k(n)) = o(n). One naturally would like to find the boundary between those func-
tions k(n) for which f(n,k(n)) = o(n) and those functions k(n) for which f(n,k(n)) is not o(n). In



particular, one would like to know whether or not f(n, (logn)/(loglogn)) = o(n) and whether or not
f(n,loglogn) = o(n). Naturally, if k(n) < h(n) and f(n,k(n)) = o(n), then f(n,h(n)) = o(n), since
f(n,h(n)) < f(n,k(n)).

However, the statement that f(n,loglogn) is not o(n) is stronger that Szemerédi’s theorem. In fact,
given any function k(n) which goes to infinity with n, the statement that f(n,k(n)) is not o(n) is stronger
than Szemerédi’s theorem. This is a consequence of Behrend’s theorem [ 1]. Indeed, if f(n,k(n)) # o(n),
then there exists an € > 0 such that for infinitely many 7,

[B C [1,n],|B| < en] = [B does not meet some k(n)-term A.P.].
Then for the same set of (infinitely many) n,
[A C[1,n],]A] > (1 —€)n] = [A contains a k(n)-term A.P].

Now let k£ be an arbitrary positive integer. Choose ng so that the preceding implication holds for n = ng
and such that k(ng) > k. It easily follows that for all n > 2nq /€,

[A C[1,n],|A] > (1 —€/2)n] = [A contains a k-term A.P].

This is exactly the hypothesis of Behrend’s theorem, and Szemerédi’s theorem is the conclusion.

2. The constant “12" which appears in Theorem 1 can be decreased to “2+ €" (at the cost of replacing
“whenever k(n) > 4" by “for all sufficiently large k(n)") by noting that in the Lemma we have f(n, p) <
(2+ ¢&)tn/p for sufficiently large p, by using 1/(logk(n) —log2) < (14 ¢€)logk(n) for sufficiently large

k(n), and by using the Prime Number Theorem instead of Bertrand’s postulate. Then one obtains

(2+¢)nlogn
Flnk(o) < Son Dok

for all sufficiently large k(n).
On the other hand, the method of Theorem 1 also give f(n,k(n)) < 18nlogn/k(n)logk(n), whenever
k(n) > 3.

Note added in proof. Professor John Truss has improved Theorem 2 to f(n?,n) > n+ n'/? /2, for all
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