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Our main result is that if G(x1; : : : ;xn) = 0 is a system of homogeneous equations such that for every
partition of the positive integers into finitely many classes there are distinct y1; : : : ;yn in one class such
that G(x1; : : : ;xn) = 0, then, for every partition of the positive integers into finitely many classes there
are distinct z1; : : : ;zn in one class such that

G
�

1
z1

; : : : ;
1
zn

�
= 0:

In particular, we show that if the positive integers are split into r classes, then for every n � 2 there are
distinct positive integers x0;x1; : : : ;xn in one class such that

1
x0

=
1
x1

+ � � �+
1
xn

:

We also show that if [1;n6�(n2�n)2] is partitioned into two classes, then some class contains x0;x1; : : : ;xn

such that
1
x0

=
1
x1

+ � � �+
1
xn

:

(Here x0;x1; : : : ;xn are not necessarily distinct.)

1 Introduction

In their monograph [1], Erdős and Graham list a large number of questions concerned with equations
with unit fractions. In fact, a whole chapter is devoted to this topic. One of their questions, still open, is
the following.

In the positive integers, let

Hm =

(
fx1; : : : ;xmg :

m

∑
k=1

1=xk = 1;0 < x1 < � � �< xm

)
;

and let H denote the union of all the Hm;m � 1. Now arbitrarily split the positive integers into r classes.
Is it true that some element of H is contained entirely in one class?
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In this note we show (Corollary 2.3 below) that if one does not require all the xk’s to be distinct,
but only many of the xk’s to be distinct, then the answer to the corresponding question is yes. More
precisely, we show that if the positive integers are split into r classes, then for every n there exist m � n

and x1; : : : ;xm (not necessarily distinct) in one class such that jfx1; : : : ;xmgj � n and ∑
m
k=1 1=xk = 1.

We actually show (Corollary 2.2 below) something stronger, namely that if the positive integers are
split into r classes, then for every n � 2 there are distinct positive integers x0;x1; : : : ;xn in one class such
that

1
x0

=
1
x1

+ � � �+
1
xn

:

(The preceding result then follows by taking x0 copies of each of x1; : : : ;xn.)
Our main result (Theorem 2.1) is that if G(x1; : : : ;xn) = 0 is a system of homogeneous equations such

that for every partition of the positive integers into finitely many classes there are distinct y1; : : : ;yn in
one class such that G(x1; : : : ;xn) = 0, then, for every partition of the positive integers into finitely many
classes there are distinct z1; : : : ;zn in one class such that

G
�

1
z1

; : : : ;
1
zn

�
= 0:

In particular, we show that if the positive integers are split into r classes, then for every n � 2 there are
distinct positive integers x0;x1; : : : ;xn in one class such that

1
x0

=
1
x1

+ � � �+
1
xn

:

We also prove (Theorem 2.3) the following quantitative result. Let f (n) be the smallest N such
that if [1;N] is partitioned into two classes, then some class contains x0;x1; : : : ;xn such that 1=x0 =

1=x1 + � � �+1=xn. (Here, x0;x1; : : : ;xn are not necessarily distinct.) Then

f (n)� n6� (n2�n)2:

2 Results

From now on we shall use the terminology of colourings rather than partitions. That is, instead of
“partition into r" classes we say “r-colouring," and instead of “there are distinct y1; : : : ;yn in one class
such that G(y1; : : : ;yn) = 0" we say “there is a monochromatic solution of G(y1; : : : ;yn) = 0 in distinct
y1; : : : ;yn".

Theorem 2.1. Let G(x1; : : : ;xn) = 0 be a system of homogeneous equations such that for every finite

colouring of the positive integers there is a monochromatic solution of G(y1; : : : ;yn) = 0 in distinct

y1; : : : ;yn. Then for every finite colouring of the positive integers there is a monochromatic solution of

G(1=z1; : : : ;1=zn) = 0 in distinct z1; : : : ;zn.

Proof. Let r be given, and consider a system G(x1; : : : ;xn) = 0 of homogeneous equations such that
for every r-colouring of the positive integers there is a monochromatic solution of G(y1; : : : ;yn) = 0 in
distinct y1; : : : ;yn. By a standard compactness argument, there exists a positive integer T such that if
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[1;T ] is r-coloured, there is a monochromatic solution to G(y1; : : : ;yn) = 0 in distinct y1; : : : ;yn.
Let S denote the least common multiple of 1;2; : : : ;T . We show that for every r-colouring of [1;S]

there is a monochromatic solution of G(1=z1; : : : ;1=zn) = 0 in distinct z1; : : : ;zn.
To do this, let

c : [1;S]! [1;r]

be an arbitrary r-colouring of [1;S].
Define an r-colouring c̄ of [1;T ] by setting

c̄(x) = c(S=x);1 � x � T:

By the definition of T , there is a solution of G(y1; : : : ;yn) = 0 in distinct y1; : : : ;yn such that

c̄(y1) = c̄(y2) = � � �= c̄(yn):

By the definition of c̄, this means that

c(S=y1) = c(S=y2) = � � �= c(S=yn):

Setting zi = S=yi;1� i� n, we have that z1; : : : ;zn are distinct, are monochromatic relative to the colour-
ing c of [1;S], and that

G
�

1
z1

; : : : ;
1
zn

�
= 0:

Omitting all references to distinctness, one gets the following.

Theorem 2.2. Let G(x1; : : : ;xn) = 0 be a system of homogeneous equations such that for every finite

colouring of the positive integers there is a monochromatic solution of G(x1; : : : ;xn) = 0. Then, for every

finite colouring of the positive integers there is monochromatic solution of G(1=z1; : : : ;1=zn) = 0.

Corollary 2.1. Let a1; : : : ;am;b1; : : : ;bn be positive integers such that

1. some non-empty subset of the ai’s has the same sum as some non-empty subset of the b j’s and

2. there exist distinct integers u1; : : : ;um;v1; : : : ;vn such that a1u1 + � � �+amum = b1v1 + � � �+bnvn.

Then, given any r-colouring of the positive integers, there is a monochromatic solution of

a1

x1
+ � � �+

am

xm
=

b1

x1
+ � � �+

bn

yn
:

in distinct x1; : : : ;xm;y1; : : : ;yn.

Proof. Let a1; : : : ;am;b1; : : : ;bn satisfy conditions 1. and 2. According to Rado’s theorem [3] (also
see [2, p. 59]), the equation

a1x1 + � � �+amxm = b1y1 + � � �+bnyn

will always have a monochromatic solution x1; : : : ;xm;y1; : : : ;yn, for every r-colouring of the positive
integers, because of condition 1. The additional condition 2. is enough (see [2, p. 62 Corollary 8 1

2 ]) to
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ensure that the equation
a1x1 + � � �+amxm = b1y1 + � � �+bnyn

will always have a monochromatic solution x1; : : : ;xm, y1; : : : ;yn, in distinct x1; : : : ;xm;y1; : : : ;yn. Theo-
rem 2.1 now applies.

Corollary 2.2. Let an arbitrary r-colouring of the positive integers be given. Let n;a be positive integers,

with n � 2, and 1 � a � n. Then the equation

a
x0

=
1
x1

+ � � �+
1
xn

has a monochromatic solution in distinct x0;x1; : : : ;xn.

Proof. This follows immediately from Corollary 2.1.

Corollary 2.3. Let an arbitrary colouring of the positive integers be given. Then for every n there

exist m � n and monochromatic x1; : : : ;xm (not necessarily distinct) such that jfx1; : : : ;xmgj � n and

∑
m
k=1 1=xk = 1.

Proof. Apply Corollary 2.2 (with a = 1) and take x0 copies of each of x1; : : : ;xm.

Theorem 2.3. For each n� 2, let f (n) be the smallest N such that if [1;N] is partitioned into two classes,

then some class contains x0;x1; : : : ;xn such that

1
x0

=
1
x1

+ � � �+
1
xn

:

(Here, x0;x1; : : : ;xn are not necessarily distinct.) Then

f (n)� n6� (n2�n)2:

Proof. The proof is by contradiction. Fix n � 2, let N = n6 � (n2 � n)2, and suppose throughout the
proof that c : [1;N] 7! f1;2g is some fixed 2-colouring of [1;N] for which there does not exist any
monochromatic solution of

1
x0

=
1
x1

+ � � �+
1
xn

:

Lemma 2.1. (a) If nx � N then c(nx) 6= c(x).

(b) If n2x � N then c(n2x) = c(x).

Proof. Part (a) follows from 1=x = 1=(nx)+ � � �+1=(nx). Part (b) follows from part (a).

Lemma 2.2. If n2(n2 +n�1)x � N, then c((n2 +n�1)x) 6= c(x):

Proof. This follows from

1
n2x

=
1

n2 +n�1
x+(n�1)

1
n2(n2 +n�1)x

and Lemma 2.1.
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Lemma 2.3. If n2(n2�n+1)x � N, then c((n2�n+1)x) 6= c(x).

Proof. This follows from

1
(n2�n+1)x

=
1

n2x
+(n�1)

1
n2(n2�n+1)x

and Lemma 2.1.

Lemma 2.4. If n2(n2 +n�1)x � N, then c((n+1)x) = c(x).

Proof. This follows from

1
n(n+1)x

=
1

(n2 +n�1)(n+1)x
+(n�1)

1
(n2 +n�1)nx

;

and Lemmas 2.1 and 2.2.

Lemma 2.5. If n2(n2 +n�1)(n2�n+1)x � N, then c(2x) = c(x).

Proof. This follows from

1
(n2�n+1)2x

=
1

(n2 +n�1)2x
+(n�1)

1
(n2 +n�1)(n2�n+1)x

and Lemmas 2.2 and 2.3.

Finally, Theorem 2.3 is proved by observing that

1
2 �1

=
1

(n+1) �1
+(n�1)

1
2(n+1) �1

;

and by Lemmas 2.4 and 2.5, c(2 �1) = c((n+1) �1) = c(2(n+1) �1) = c(1), a contradiction.

Remark. The authors have learned that Hanno Lefmann (Bielefeld) has independently obtained results
which include our Theorem 2.2.
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