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Abstract

We briefly review the history of Szemerédi’s theorem, and its equivalence to Furstenberg’s theorem

on multiple recurrence of measure-preserving transformations. We then show that the truth of a certain

graph-theoretic conjecture would imply Szemerédi’s theorem.

1 Introduction

In 1927, B. L. van der Waerden [10] published a proof of the following theorem, opening an area of
research which continues to grow at an explosive rate.

Theorem 1. For every pair k;r of positive integers there exists an integer n = n(k;r) such that if the set

[1;n] = f1;2; : : : ;ng is partitioned in any way into r subsets A1;A2; : : : ;Ar, then at least one of the subsets

Ai must contain a k-term arithmetic progression a;a+d;a+2d; : : : ;a+(k�1)d.

(See [2] for an up-to-date survey of results and current questions of interest in this area, including an
extensive list of references.)

In 1975, E. Szemerédi [9] proved the following profound generalization of this result, which had
been conjectured in 1936 by Erdős and Turán [3].

Theorem 2. Let k be an arbitrary positive integer, and let ε be an arbitrary positive real number. Then

there exists an integer n0 = n0(k;ε) such that if n � n0 and A is any subset of [1;n] which contains more

than εn elements, then A contains a k-term arithmetic progression.

Earlier partial results were obtained by K. F. Roth in 1953 [6], who proved the result for the special
case k = 3, by E. Szemerédi in 1969 [8], who settled the question for the special case k = 4, and by Felix
Behrend in 1938 [1], who proved an interesting consequence of the falsity of Theorem 2.

In 1976 H. Furstenberg observed that Theorem 2 is equivalent to the following “multiple recurrence"
theorem.
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Theorem 3. Let (X ;B;µ) be a probability measure space. Let T be an invertible, measure-preserving

transformation on (X ;B;µ), and let A 2 B be any set of positive measure. Then for every positive

integer k there exists a subset B of A with µ(B)> 0 and a positive integer n such that

T n(B)[T 2n(B)[�� �[T (k�1)n(B)� A:

Furstenberg found an ergodic theoretical proof of Theorem 3 [5], thus giving a new proof of Sze-
merédi’s Theorem. (A somewhat simplified exposition of this proof is given by Furstenberg, Kaznelso,
and Ornstein in [4]).

2 A graph-theoretic conjecture which implies Szemerédi’s theorem

Conjecture. Let t;k be arbitrary positive integers. Then there exists a positive integer N = N(t;k) with
the following property. Let n � N, and let the edges of the complete graph on n+ 1 vertices, Kn+1, be
colred with tn colors, in such a way that no two adjacent edges have been assigned the same color. Then
there exists either a bichromatic circuit (a circuit whose edges are colored alternately using only two
colors) or a bichromatic path of length k (a path with k edges, which are colored alternately using only
two colors).

Proof that the conjecture implies Szemerédi’s theorem. Suppose that Szemerédi’s theorem is false. Then
for some fixed positive integers s and k, and arbitrarily large integers n, there exist sets An such that
An � [1;sn], jAnj= n+1, and An contains no k-term arithmetic progression.

(We will use these sets An to show that N(2s;2k�1) does not exist, contradicting the conjecture).
It follows that An contains no k-term arithmetic progression modulo 2sn+ 1, that is, An does not

contain a1;a3; : : : ;ak (not necessarily distinct) such that a1 6� a2 (mod 2sn+1) and

a2�a1 � a3�a2 � �� � � ak �ak�1 (mod 2sn+1):

Now let K(An) denote the complete graph with vertex set An. We color the edges of K(An), using the
2sn elements of [1;2sn] as colors, in the following way. For x;z in K(An), x 6= z, we assign to the edge
fx;zg the unique element y in [1;2sn] such that

x+ z � 2y (mod 2sn+1):

Note that this just means that x;y;z form a 3-term arithmetic progression modulo 2sn+1.
We can now show that there does not exist any bichromatic path of length 2k�1.
Suppose on the contrary that a1b1a2b2 � � �ak�1bk�1ak are the vertices (in K(An)) of a bichromatic

path of length 2k�1. Then the edges fa1;b1g;fa2;b2g; : : : ;fak�1;bk�1g all have say color y, so that

2y � a1 +b1 � a2 +b2 � �� � � ak�1 +bk�1 (mod 2sn+1):

Similarly,
b1 +a2 � b2 +a3 � �� � � bk�1 +ak (mod 2sn+1):
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In particular, ai + bi � ai+1 + bi+1 (mod 2sn+ 1) and bi+1 + ai+2 � bi + ai+1 (mod 2sn+ 1). Adding
these two congruences gives

ai +ai+2 � 2ai+1 (mod 2sn+1); 1 � i � k�2:

Hence a1;a2; : : : ;ak form a k-term arithmetic progression modulo 2sn + 1 which is contained in An,
contradicting one of our assumptions about An.

Therefore no bichromatic path of length 2k� 1 exists, for this particular coloring of the edges of
K(An).

Similarly, no bichromatic circuit can exist, we just go around the circuit (which must have even
length) enough times to obtain a k-term arithmetic progression modulo 2sn+1.

Since these coloring exist for arbitrarily large n, we conclude that N(2s;2k�1) does not exist. Thus
the falsity of Szemerédi’s theorem implies the falsity of the conjecture.

3 Remarks

When t = 1, we can take N(1;k) = 3. Indeed, if n � 3 is even then no coloring of Kn+1 with n colors,
where no two adjacent edges have the same color, is possible. If n � 3 is odd and the edges of Kn+1

are colored with n colors, where no two adjacent edges have the same color, then for each color, exactly
(n+ 1)=2 edges must have the same color. Hence for any two distinct colors, the set of edges having
these two colors will be the union of bichromatic circuits.

(These bichromatic circuits can be small. If n+ 1 = 2m, we can label the vertices of Kn+1 with the
n+1 elements of the (n+1)-element field, and then use the n non-zero elements of this field as colors
by assigning the color a+b to the edge fa;bg, for each pair a;b;a 6= b of vertices. Under this coloring,
every bichromatic circuit is a 4-circuit).

If we use n+1 colors for the edges of Kn+1, instead of n colors, there need not exist any bichromatic
circuits at all. Indeed, let n+1 = p, where p is an odd prime. Label the vertices of Kn+1 with the elemtns
of the (n+1)-element field, and again assign to the edge fa;bg the color a+b, for each pair a;b;a 6= b,
of vertices. Now the zero element of the field is used as a color, and there are no bichromatic circuits. In
fact, given any two colors, the set of all edges in these two colors is a path of length p�1. (This example
is due to Joel Spencer [7]).

At present we are unable to settle the conjecture even for the special case t = 2. (Note that the
conjecture makes sense even if we take t to be, for example, 3=2).
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