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1 Van der Waerden’s Theorem

The particular variation of van der Waerden’s Theorem to be presented here has been discovered inde-
pendently by any number of people, but a proof of its equivalence to van der Waerden’s Theorem has, to
the author’s knowledge, never appeared in print. (The variation is stated in [6], and a recent application
will appear in [5].)

Theorem V (Van der Waerden [12]). For all positive integers k and l there exists n = n(k; l) such that

if any set of n consecutive integers is partitioned into k subsets, at least one of these subsets contains an

arithmetic progression of length l.

Theorem V’ (Variation). For all positive integers m and l there exists p = p(m; l) such that if a1 <

a2 < � � �< ap are positive integers such that a j+1�a j �m, 1� j � p�1, then fa1; : : : ;apg contains an

arithmetic progression of length l.

Most published proofs of van der Waerden’s theorem are carried out by induction on k and l. It wuld
be of interest to find a direct inductive proof of Theorem V’. In this note, however, we shall show that
Theorem V implies Theorem V’ and conversely.

To this end, it is convenient to let V (k; l) denote the statement that if the set N of all positive integers
is partitioned into k subsets, then at least one of these subsets contains an arithmetic progression of length
l. Also, let V 0(m; l) denote the statement that if a1 < a2 < :: : are a sequence of positive integers such
that a j+1�a j � m, j = 1;2; : : : ; then the set fa1;a2; : : :g, contains an arithmetic progression of length l.

Clearly Theorem V implies statement V (k; l) for every k and l, and Theorem V’ implies statement
V 0(m; l) for every m and l. We show now that for every k and l, V (k; l) implies the existence of n(k; l).
Indeed, suppose that the integer n= n(k; l) does not exist. Then for every n we have a sequence of length
N on k symbols which represents a partition of f1;2; : : : ;ng into k subsets such that no subset contains a
progression of length l.

Let a1 be one of the k symbols which is the 1st symbol of infinitely many of these sequences. Let
a2 be a symbol which is the 2nd symbol of infinitely many sequences beginning with a1. Let a3 be
the 3rd symbol of infinitely many sequences starting with a1a2. In this way we construct an infinite
sequence a1a3 � � � on k symbols which represents a partition of N into k subsets, none of which contains
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an arithmetic progression of length l, contradicting V (k; l). (A similar argument shows that V 0(m; l)

implies the existence of p(m; l). However, this fact will not be used here.)
We are now ready to show that Theorem V’ implies Theorem V. We fix l and demonstrate the exis-

tence of n(k; l) by induction on k. The case k = 1 is trivial, so we assume that n(k; l) exists and use this
to establish V (k+ 1; l), which, as noted above, implies the existence of n(k+ 1; l), thus completing the
induction.

Hence, let N be partitioned into k+1 subsets and consider the (k+1)st subset fa1;a2; : : :g. We may
as well assume it is infinite. If for some m, a j+1 � a j � m, j = 1;2; : : : ; then by V 0(m; l) (which holds
since we are assuming Theorem V’) the (k+1)st subset contains an arithmetic progression of length l.
If no such m exists, then the given partition of N induces partitions of arbitrarily large sets of consecutive
positive integers into k subsets only. But then by the existence of n(k; l), at least one of these subsets
contains an arithmetic progression of length l. Thus at least one of the k+ 1 subsets into which n was
partitioned contains an arithmetic progression of length l. This establishes V (k+1; l), and as previously
remarked, completes the induction.

Conversely, we now show that Theorem V implies Theorem V’. Let m; l be given, and let p =

n(m; l)� (m�1). Let A0 = fa1;a2; : : : ;apg, where a1 < a2 < � � �< ap and a j+1�a j �m, 1� j � p�1.
We show A0 contains an arithmetic progression of length l. Define

A1 = fa1+1;a2+1; : : : ;ap+1gnA0;

A2 = fa1+2;a2+2; : : : ;ap+2gn (A0[A1); � � � ;

Am�1 = fa1+m�1;a2+m�1; : : : ;ap+m�1gn (A0[A1[�� �[Am�2):

Then f1;2; : : : ;ap+m�1g is partitioned into the m sets A0;A1; : : : ;Am�1. Since ap+m�1� p+m�1=
n(m; l); at least one of these sets, say Ai, contains an arithmetic progression of length l. Since

Ai � fa1+ i;a2+ i; : : : ;ap+ ig;

the set A0 = fa1;a2; : : : ;apg also contains such a progression.
This completes the proof of the equivalence of Theorems V and V’.

2 Ramsey’s Theorem

Let G be a graph with an infinite number of vertices such that at least two of every three vertices of G

are joined by an edge of G. G. Szekeres ( [10], [11]) showed that such a graph G must contain an infinite
complete subgraph. (An infinite complete subgraph of G is an infinite set of vertices of G, every two of
which are joined by an edge of G.)

P. Turán ( [10], [11]) generalized this result by showing that for every fixed positive integer d, if G is
a graph with an infinite number of vertices such that at least two of every d vertices of G are joined by
an edge of G, then G contains an infinite complete subgraph.

This result of Turán can itself be further strengthened to obtain the following result, which is desig-
nated Theorem R’, since it is a “variation" on Ramsey’s Theorem.
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Theorem R’ (Ramsey [9]). Let G be a graph with an infinite number of vertices such that at least two

of every infinite set of vertices of G are joined by an edge of G. Then G contains an infinite complete

subgraph.

Ramsey’s Theorem is the following.

Theorem R. If G is a graph with an infinite number of vertices, then either G contains an infinite

complete subgraph or there is an infinite set of vertices of G no two of which are joined by an edge of G.

Thus Theorem R’ is in fact Ramsey’s Theorem itself.

Added in proof: Another paper has recently appeared in which Theorem V’ is mentioned. It is:
John R. Rabung, On applications of van der Waerden’s theorem, Math. Magazine, 48 (1975) 142–148.
Rabung’s paper contains, amongst other interesting things, an argument essentially identical with the
proof above that Theorem V implies Theorem V’.
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