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Abstract

We discuss van der Waerden’s theorem on arithmetic progressions and an extension using Ram-

sey’s theorem, and the canonical versions. We then turn to a result (Theorem 6 below) similar in

character to van der Waerden’s theorem, applications of Theorem 6, and possible canonical versions

of Theorem 6. We mention several open questions involving arithmetic progressions and other types

of progressions.

1 van der Waerden’s theorem on arithmetic progressions

One of the great results in combinatorics is the following theorem.

Theorem 1. (van der Waerden’s theorem on arithmetic progressions) If N is finitely colored (= finitely

partitioned) then some color class (= cell of the partition) contains arbitrarily large arithmetic progres-

sions P = fa;a+d;a+2d; : : : ;a+(n�1)dg.

Van der Waerden’s original proof is in [30]. The most famous proof (essentially van der Waerden’s
own proof) is in [20]. See also [31]. The shortest proof is in [18]. The clearest proof is probably in [22].
A topological proof can be found in [15]. For other proofs, see [1, 6, 12, 13, 23–25, 29, 32].

The ”canonical” version of van der Waerden’s theorem is the following, due to Erdős and Graham
[14].

Theorem 2. Given f : N !ω = f0;1;2; : : :g, there exist arbitrarily large arithmetic progressions P such

that f jP is either constant or 1-1.

An equivalent form of van der Waerden’s theorem is the following.

Theorem 3. For all k� 1 there exists a (smallest) ω(k) such that every 2-coloring of [1;ω(k)] produces

a monochromatic k-term arithmetic progression.
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Using the definition of ω(k) from the preceding theorem, the only known values of ω(k) are ω(1) =
1, ω(2) = 3, ω(3) = 9, ω(4) = 35, ω(5) = 178. For values involving more than two colors, see [2,4,11,
19, 26].

Berlekamp [7] showed in 1961 that k2k < ω(k+1) if k is prime.
Erdős asked in 1961 whether or not limk!∞

ω(k)
2k = ∞, and offered US $25 for an answer. This

question is still open, and the prize is still available.
Szabo [28] showed in 1990 that 2k

kε < ω(k), k > k(ε).

Gowers showed in 1998 [16, 17] that ω(k)< 22222k+9

.
Graham asked in 1998 whether ω(k)< 2k2

, and offers US $1000 for an answer.
Using Ramsey’s theorem, the following “extended” van der Waerden’s theorem can be proved.

Theorem 4. (Extended van der Waerden’s theorem) If Pf (N) (the collection of all finite subsets of N) is

finitely colored, then for every n� 1 there exist an infinite set Y �N (Y depends on n) and an arithmetic

progression fa;a+d;a+2d; : : : ;a+(n�1)dg such that the set [Y ]a[ [Y ]a+d[ [Y ]a+2d[�� �[ [Y ]a+(n�1)d

is monochromatic. (Here [Y ]k denotes the set of all k-element subsets of Y .)

Proof. Let g : Pf (N)! [1;r] be an r-coloring of Pf (N). Let n be given. By van der Waerden’s theorem,
choose m large enough that every r-coloring of [1;m] produces a monochromatic n-term arithmetic pro-
gression. Using Ramsey’s theorem, choose infinite sets X1;X2; : : : ;Xm in turn so that Y = Xm � Xm�1 �
�� � � X2 � X1 � N and g is constant on each of [Xk]

k, 1 � k � m. ([Xk]
k denotes the set of all k-element

subsets of Xk.) Let us suppose that (for each k) g(A) = ak for all A in [Xk]
k.

Let h : [1;m]! [1;r] be defined by setting h(k) = ak, 1 � k � m. By the choice of m, there exist
positive integers a;d such that h(a) = h(a+d) = h(a+2d) = � � �= h(a+(n�1)d). This means that g

is constant on the set [Y ]a[ [Y ]a+d [ [Y ]a+2d [�� �[ [Y ]a+(n�1)d , and the proof is complete.

The following was pointed out by Shi Lingsheng, a student of Hans Juergen Proemel: Suppose X

is any finite collection of subsets of N such that every finite coloring of N produces arbitrarily large
monochromatic elements of X . Then for every finite coloring of Pf (N) and every n, there exists an
infinite set Y (Y depends on n) and an element A of X of size n, such that

S
[Y ]x is monochromatic, where

the union is over all x in A. The proof is exactly as above. Thus for example, using Folkman’s theorem,
for every finite coloring of Pf (N) and every n, there exists an infinite set Y (Y depends on n) and distinct
positive integers a1;a2; : : : ;an such that

S
[Y ]x is monochromatic, where the union is over all x such that

x is a sum of distinct a1;a2; : : : ;an.
It would be of interest to find a canonical version of Theorem 4. (One would likely need to use the

canonical version of van der Waerden’s theorem above, as well as the canonical version of Ramsey’s
theorem.)

This has not yet been done. However, one can get a canonical theorem (Theorem 5 below) for a
structure somewhat smaller (but still very large!) than [Y ]a[ [Y ]a+d [ [Y ]a+2d [�� �[ [Y ]a+(n�1)d .

From the set [Y ]a [ [Y ]a+d [ [Y ]a+2d [ �� � [ [Y ]a+(n�1)d one can easily construct a forest F with the
following properties:

1. Each vertex of F is a finite subset of Y .

2. F has n levels, and each vertex at a level i has a+ id elements, 0� i� n�1.
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3. Vertex y at level i+1 covers vertex x at level i iff x� y.

4. If y;z cover x then y\ z = x.

5. Each element of Y appears in at most one tree of the forest F .

6. Each vertex not at level n�1 has infinitely many immediate successors.

7. F is the union of infinitely many non-empty trees.

Let us call such a structure an “arithmetic ω-forest of height n.”
Diana Piguetova, a student of Jarik Nes̆etr̆il, has proved the following result.

Theorem 5. If g : Pf (N)! ω is an arbitrary coloring, then for every n � 1 there exists an arithmetic

ω-forest F of height n on which the coloring g has one of the following patterns:

1. gjF is constant.

2. Each tree is monochromatic, and different trees have different colors.

3. Each level in the whole forest is monochromatic, all of different colors.

4. Each level in each tree is monochromatic, all of different colors.

5. gjF is 1-1.

2 A theorem involving “almost arithmetic progressions”

Van der Waerden’s theorem guarantees large arithmetic progressions, but says nothing about the common
difference of these progressions. In fact, Beck [3] showed that there exists a 2-coloring of N such that for
all large d, there do not exist large monochromatic arithmetic progressions with common difference d

— in fact if P is a monochromatic arithmetic progression with common difference d, then jPj< 2logd.
In the opposite direction, there exists a 2-coloring of N for which there does not even exist a

monochromatic 4-term arithmetic progression fa;a+ d;a+ 2d;a+ 3dg with d > a=3. (The 1/3 here
cannot be replaced by 1/32.) See [10].

The next theorem, first proved in [8] (see also [9]), shows that one can control the common difference,
but at the expense of not insisting on an arithmetic progression.

Theorem 6. for every finite coloring of N, there exist a fixed d and arbitrarily large monochromatic sets

A = fa1 < a2 < a3 < � � �< ang with maxfa j+1�a jj j = 1;2; : : : ;n�1g= d.

Note that when A is very large compared to d, then the elements of A are approximately equally
spaced, so we might call A an “almost arithmetic progression.”

Theorem 6 differs from van der Waerden’s theorem in a number of ways:

1. It does not directly imply, and is not directly implied by, van der Waerden’s theorem.

2. It does not have a “density version.” (See [5] for example.)
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3. It has an extremely simple proof, by induction on the number of colors.

4. The d in the conclusion is fixed.

5. No canonical version is known.

An application of Theorem 6 is the following result, proved in [8, 9].

Theorem 7. Let S,T be semigroups and let ϕ : S ! T be a homomorphism. Assume that T is locally

finite, and that for every idempotent e in T , ϕ�1(e) is locally finite. Then S is locally finite.

(For groups, this is an old theorem of O. Schmidt: A locally finite extension of a locally finite group
is locally finite.)

Sketch of proof. Some simple considerations reduce the proof to the following case. Let ϕ : S ! G,
where G is a finite group, and assume that ϕ�1(e) is locally finite. Assume that S is generated by
W = fw1;w2; : : : ;wtg. It is necessary to show that S is finite. It suffices for this (by a simple compactness
argument) to show that every sequence s = x1x2x3 : : : of elements of W contains a “contractible” factor
x j+1x j+2 � � �x j+k, that is, a factor x j+1x j+2 � � �x j+k which equals the product of fewer than k elements of
W .

Define the finite coloring f ofN by f (m)=ϕ(x1x2 � � �xm) for all m2N. Then, by Theorem 6, we have
a fixed d and, for every n, a monochromatic set A = fa1 < a2 < a3 < � � �< ang with maxfa j+1�a jj j =
1;2; : : : ;n�1g= d.

Define g1 = x1 � � �a1, g2 = xa1+1 � � �xa2 , g3 = xa2+1 � � �xa3 ; : : : ;xan�1 � � �xan .
Then f (a1) = f (a2) = � � � = f (an) means ϕ(g1) = ϕ(g1g2) = ϕ(g1g2g3) = � � � = ϕ(g1g2g3 � � �gn),

so e = ϕ(g2) = ϕ(g3) = ϕ(g4) = � � �= ϕ(gn), or g2;g3;g4; : : : ;gn 2 ϕ�1(e), and jgij � d. Since ϕ�1(e)

is locally finite, and there are only finitely many possibilities for g2;g3; : : : ;gn (independent of n), when
n is large enough the factor g2g3 � � �gn of s will be contractible. Hence S is finite.

Theorem 6, together with some algebra, also implies [27] that every torsion semigroup of matrices
over an arbitrary field F is locally finite [21].

The historical results here are:

� 1911 Schur – Every torsion group of matrices over C is locally finite.

� 1965 Kaplansky – Every torsion group of matrices over an arbitrary field F is locally finite.

� 1971 Brzowski, Culik II & Gabrielian – There is an infinite semigroup S on two generators satis-
fying the identity x2 = x3 for all x 2 S.

� 1975 McNaughton & Zalcstin – Every torsion semigroup of matrices over F is locally finite.

The questions on groups of matrices were inspired by “Burnside’s Problem:”

� 1902 Burnside: Is every torsion group G locally finite? Yes, in the case x2 = 1, and in the case
x3 = 1.

� 1940 Sanov – Yes, if x4 = 1.
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� 1952 Green & Rees – [Every group with xn = 1 is locally finite], [Every semigroup with xn+1 = x

is locally finite.]

� 1957 M. Hall Jr. – Yes, if x6 = 1.

� 1964 Golod & Shafarevich – No, if xn(x) = 1. (6 pages. See the book Noncommutative Rings, by
I. N. Herstein, Mathematical Association of America, Washington, DC, 1994.)

� 1965 Novikov & Adian – No, if xn = 1, for odd n� 4381. (300+ pages.)

� 1975 Adian – No, if xn = 1, for odd n� 665.

� 1992 Lysionok – No, if xn = 1, for all n� 213.

(See the book Around Burnside, by A. I. Kostrikin, Springer-Verlag, Berlin, 1990.)

3 On the canonical version of Theorem 6

In this section we describe a 2-coloring f of ω which shows that the constant colorings and the 1-1
colorings are not sufficient for a canonical version of Theorem 6. That is, there does not exist a fixed d

and arbitrarily large sets A = fa1 < a2 < a3 < � � � < ang with maxfa j+1� a jj j = 1;2; : : : ;n� 1g = d,
such that f jA is either constant or 1-1. In fact, even the “almost constant” colorings (c colors are allowed,
where c is a constant) and the “almost 1-1” colorings (at most c-to-1, where c is a constant) are not
enough. (See Theorem 8 below.) We omit the proofs.

Let S denote the set of all sums of distinct even powers of 2, including 0 as the empty sum. Thus
S = f0;1;4;5;16;17;20;21;64; : : :g.

Let T denote the set of all sums of distinct odd powers of 2, including 0 as the empty sum. Thus
T = f0;2;8;10;32;34;40;42; : : :g.

Order the elements of S and T so that S = fs0 < s1 < � � �g and T = ft0 < t1 < � � �g.
Then, for each j, f�1( j) is defined by f�1( j) = S+ t j = fs+ t jjs 2 Sg. Then

0 = f (0) = f (1) = f (4) = f (5) = � � �
1 = f (2) = f (3) = f (6) = f (7) = � � �
2 = f (8) = f (9) = f (12) = f (13) = � � �
3 = f (10) = f (11) = f (14) = f (15) = � � �

: : :

(Note that in [13], 4 colors are used, 4 times each. In general, in [0;4k � 1], 2k colors are used, 2k

times each.)
Since for all n� 0, f�1(n) is a translate of f�1(0) = S, we have a partition of ω into infinitely many

translates of the infinite set S. Other such partitions of ω could be obtained by partitioning the powers of
2 differently. For example, we could let S be the set of all sums of distinct prime powers of 2 including
20 and 21, and let T be the set of all sums of distinct composite powers of 2.
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The set S above (S = set of sums of distinct even powers of 2) is the “Moser-de Bruijn sequence.”
(Neil Sloane’s sequence #A000695. See http://www.oeis.org.) Setting f = f (0) f (1) f (2) f (3) � � � ,
we have f = [(0011001122332233)2(4455445566776677)2]2 � � � .

Definition 1. For A = fa1 < a2 < a3 < � � � < ang with maxfa j+1� a jj j = 1;2; : : : ;n� 1g = d, we say

that the gap size of A is d, and write gs(A) = d. If jAj= 1, we set gs(A) = 1.

Theorem 8. With f defined as above, and any A� ω ,
p
jAj=8gs(A)< j f (a)j<

p
8jAjgs(a).

4 Some open questions

Conjecture 1. if g is an arbitrary coloring of ω , then there exists a fixed d and arbitrarily large sets A

with gs(A) = d, such that either

(i) at most
pjAj colors appear in A; or

(ii) each color appears at most
pjAj times in A.

(For the coloring f above, with d = 1 and A = [0;4k � 1], exactly
pjAj colors appear in A, and each

color appears exactly
pjAj times.)

Question 1. The total number of 3-term arithmetic progressions in [1;n] is (1 + o(1))(n2=4). For
each n � 1, let d(n) denote the largest possible size of a collection of 3-term arithmetic progressions in
[1;n] such that each two of the intersect in at most one point. There should be a constant d such that
d(n) = (d+o(1))(n2=4). Find the value of d. (Hayri Ardal, a student at Boğaziçi University in Istanbul,
has shown that d, if it exists, satisfies :47 < d < 43=84.)

Question 2. Color the interval [1;3n] with 3 colors, each color appearing exactly n times. Is it true
that there must exist a 3-term arithmetic progression in [1;3n] which has received all three colors? (This
problem is due to Radoş Radoic̆ić, a student at MIT. He has shown that if ω is 3-colored, and each
color class has density at least 1/6, then there must exist a 3-term arithmetic progression in ω which has
received all three colors.)

Question 3. Let g(K) denote the smallest positive integer n such that if the interval [1;n] is partitioned
into two parts, then at least one of these parts must contain a k-term increasing set each of whose con-
secutive differences belongs to the set fd;2dg, for some positive integer d.

Let h(k) denote the smallest positive integer n such that if A is any n-element set of positive integers,
each of whose consecutive differences belongs to the set f1;2g, then A must contain a k-term arithmetic
progression.

Can one find reasonable upper bounds on g(k) and h(k)? If so, this might give a reasonable upper
bound on the van der Waerden function w(k), since w(k)� g(h(k)).
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Question 4. Is it not hard to show that if f1;2; : : : ;n2g is 2-colored, then there exists a monochromatic
set fa1;a2; : : : ;ang such that the set of consecutive differences fa j+1 � a jj1 � j � n� 1g has at mostp

n elements? Can one find a “small” g(n) such that if f1;2; : : : ;g(n)g is 2-colored, then there is a
monochromatic set fa1;a2; : : : ;ang such that the set of consecutive differences fa j+1�a jj1� j� n�1g
has at most logn elements? For each k can one find (for arbitrarily large n) a1 < a2 < � � � < an with
a j+1�a j � logn;1� j � n�1, such that fa1;a2; : : : ;ang contains no k-term arithmetic progression?
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