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Abstract

Some results of geometric Ramsey theory assert that if F' is a finite field (respectively, set) and n
is sufficiently large, then in any coloring of the points of F" there is a monochromatic k-dimensional
affine (respectively, combinatorial) subspace (see [9]). We prove that the density version of this result
for lines (i.e., k = 1) implies the density version for arbitrary k. By using results in [2, 6] we obtain
various consequences: a “group-theoretic" version of Roth’s Theorem, a proof of the density assertion
for arbitrary k in the finite field case when |F| = 3, and a proof of the density assertion for arbitrary k

in the combinatorial case when |F| = 2.

1 Results

In this section we will state and discuss the main results and prove some corollaries. The proofs of the
main results are in the following section. Throughout ¢ denotes a prime power.

Let IF, be the field with g elements and let V be an n-dimensional vector space over IF,. For each
positive integer k and positive real number € let n(€,k,q) denote the smallest integer (if one exists) such
that

n=dimg, V >n(e,k,q), ACV, |A]>¢g|V]

imply that A contains an affine k-space. (By an affine k-space we mean any translate of a k-dimensional
vector subspace; the purist will note that we only use the structure of V as an affine space.)

The “Affine Line Conjecture" is the assertion that n(g, 1,g) exists for all € > 0 and all . The existence
of n(e,k,q) would be a density version of the results in [9] on Ramsey theorems in geometric contexts.

The main assertion of this paper is that if, for a fixed ¢, n(€, 1,q) exists for all € > 0, then n(g,k,q)
exists for all k and all € > 0. We will also reinterpret this result in the context of “combinatorial” k-spaces
and “lattices” in abelian groups. We include a number of corollaries and remarks.

(It is not hard to see that if n(€, 1, q) exists for all € > 0 and all g, then n(€,k,q) exists for all k, €, and
g. Indeed, if £,k, and q are given, let F' be the extension of I, of degree k. An affine line in an F'-vector
space is a k-space over [, if we “restrict scalars" to IF;; from this it is easy to see that the existence of
an affine line in a large enough subset of F" implies the existence of an affine k-space in a large enough
subset of IF’;".)



Theorem 1. Suppose that F is a fixed finite field and that n(€, 1,q) exists for all € > 0. Then n(€,k,q)
exists for all € > 0 and all k.

Corollary. The integers n(€,k,2) and n(€,k,3) exist for all € > 0 and all k.

Proof of the corollary. Any two-element subset of an [F, vector space is an affine line so it is trivial that
n(g,1,q) exists. The theorem then implies that n(€, k,2) exists for all k (see the corollary to Lemma
1 in [2] for a different proof of the existence of n(g,k,2)). The existence of n(g,k,3) follows from
Theorem 1 and the existence of n(g, 1,3) which is the central result of [2]. This finishes the proof of the

corollary. O

Aset {xi,...,x;} of the elements in an abelian group G is said to be independent if c;x| +cox2 ++ - =

cxx; = 0 implies that ¢;x; = 0 for each i. An (m, k)-lattice in an abelian group G is a set of the form
M={a+cixi+-+cxp:ci=0,1,...om—1},

where a is an element of G and the x; are independent. If V is a vector space over a finite field, then by
an (m, k)-lattice in V we mean an (m, k)-lattice in its underlying additive group.]

Let n'(&,k, q) denote the smallest integer (if one exists) such that if
n=dimg, V > n'(e,k,q), ACV, |A]>eglV],

then A contains a (3, k)-lattice.
Theorem 2. n'(€,k,q) exists for all € > 0, k, and q.

Corollary. For each € > 0 and positive integer k there is an integer m(&,k) such that if G is any finite
abelian group with more than m(€,k) elements and A is any subset of G with more that €|G| elements,
then there is a (3,k)-lattice inside A.

Proof of the corollary. Let k and € be given. Choose by Szemerédi’s theorem [10] a large enough n so
that any subset of {1,2,...,n} with more than en elements contains an arithmetic progression with 3k
terms. Choose m(€,k) large enough so that any finite abelian group G with more than m(€,k) elements
must contain either a cyclic subgroup H of order at least n, or a subgroup H which is the direct product
of at least n'(&,k, p) cyclic groups of order p for some prime p < n.

Now let G be a finite abelian group with more than m(e,k) elements and let A be a subset of G
with |A| > €|G|. Let H be the subgroup whose existence is guaranteed by the choice of m(¢g,k). Then
|ANa+ H| > €|H| for some coset a+ H of H. If H is cyclic, then A — a contains the set

{ao+crd+cr(3d) +---cx (37 'd) : ¢; = 0,1,2},

where d is the difference of the arithmetic progression whose existence is guaranteed by the choice of n
above. If H is the direct product of at least ' (€, k,q) cyclic groups of order p, then A — a contains

{ap+cixi+--+cpxg ¢ =0,1,2}

for an independent set of x;. Thus in either case A contains a (3, k)-lattice and we are finished. O



Remarks. (1) Roth’s special case of Szemerédi’s theorem asserts that if n is sufficiently large and A is
a subset of {1,2,...,n} with more than en elements then A contains a set of the form {a,a + x,a + 2x}.
This is equivalent to the case k = 1 of the corollary in the case in which G is cyclic. Indeed, it is not hard
to check that one has

1 €
<n<-— —
m(e, 1) <n< 2m(z,l)-i-l

(to verify the second inequality consider subsets of the “first half" of a sufficiently large cyclic group).
Thus the corollary could be thought of as a group-theoretic generalization of Roth’s Theorem.

(2) Since sufficiently large groups contain large abelian subgroups [4], we could actually delete the
requirement that G be abelian in the statement of the corollary.

(3) If the Affine Line Conjecture is valid, then the results here imply the obvious “group-theoretic
generalization" of Szemerédi’s Theorem: For every € > 0, k, and [ there exists an integer m(€,k,I) such
that if G is any finite abelian group with more than m(€, k,[) elements and A is any subset of G with more

€|G| elements, then there exists an (/,k)-lattice in A.

Finally, we remove the algebraic structure on the underlying set, replacing F, with an arbitrary
finite set. Thus we consider combinatorial subspaces; we briefly recall the definition (see [0] for further
details).

Let F be the finite set {0,1,...,# — 1} with 7 elements. A subset W of F" is a combinatorial k-space

if it satisfies the following. There is a partition
{1,...,1’1} =BoUB1U---UBy

such that By, ..., By are nonempty. There is a function f : By — F. A function f : FX — F" is defined by

fOu, . y) = (x1,...,x,) where

xi = f(i) for i in By,

X =y foriinB;,1<j<k.

W is the range of f.

The definition is complicated, but it captures a notion of subspace when the only structure on F is
that of a finite set. We remark that the Hales-Jewett Theorem [0, 7] asserts that if n is large enough, then
in any coloring of F" there is a monochromatic combinatorial 1-space (usually called a combinatorial
line).

Let n" (&, k,t) be the smallest integer (if one exists) such that if
n>n"(e k1), ACF", |A|l>¢|F"|,

then A contains a combinatorial k-space.
Theorem 3. Let ¢ be fixed. If n” (€,1,t) exists for all € > 0, then n”(&,k,t) exists for all € > 0 and all k.
Corollary. n'"(g,k,2) exists for all € > 0 and all k.

Proof of the corollary. The existence of n”’(€,1,2) is a simple consequence of Sperner’s Lemma (see [1]
or [6]). O



Remarks. (1) In [1] it is shown that if there is a fixed & < 1 such that n” (g, 1,¢) exists for all ¢, then
n'"(€,1,t) exists for all € > 0 and all z. The corresponding result for (g, 1,4) is proved in [3].
(2) The existence of n”(g,1,t) is a “density version" of the Hales-Jewett Theorem. Graham has

offered a reward for a proof of the existence (or non-existence!) of the numbers n” (g, 1,3).

2 Proofs

The following lemma contains the crucial idea underlying Theorems 1, 2, and 3.

Lemma. Let F, be a fixed finite field and k a fixed positive integer. Assume that n(€,1,q) exists for all
€ > 0. Then for each positive integer r, if n(1/(r+1),k,q) exists then n(1/r,k+ 1,q) exists. Similar
statements holds for n' (&,k,q) and n" (€, k,t).

Proof. We give the proof in the vector space case n(€,k,q). The proofs for n'(€,k,q) and n" (g, k,t) are
entirely analogous. In the lattice case n'(€,k, ) it is merely necessary to replace “k-space" with *“(3,k)-
lattice" and “line" with “(3,1)-lattice” throughout. In the combinatorial case n”(&,k,¢) it is necessary
to replace “affine k-space" with “combinatorial k-space" and “affine line" with “combinatorial line"
throughout.

Let ny = n(1/(r+1),k,q). Let e be the number of distinct k-dimensional vector subspaces of any

no-dimensional vector space over F,. Let § = (¢"0er?)~! and let s = n(8, 1,q). We claim that
n(l/rk+1,q) <ng+s.

To prove this we must start with a vector space V over F, of dimension at least ng +s. Let A be a
subset of V with
Al > (1/n)V] > (1/r)g"".

Let Wy be a np-dimensional subspace of V and let
v=Jw

be the decomposition of V into a union of the pairwise disjoint translates (cosets) of Wj. For the proof to
work in the combinatorial case it is necessary at this point to choose W to be the subspace consisting of
the vectors whose last s components are 0.

Let ¢ be the number of cosets W, such that

1 1
A < — Wyl = ——
| ﬁWo‘|_r—|—1| ol r+1

10

q
There are ¢° cosets altogether, so
1 t
=|VI<|Al=) |[ANWy| < ——|W, S —1) Wy
VI <Al = LIANWal < —Wal +(q" =1)|Wal

This gives
¢ —t>q" /1%



Hence there are d = ¢* —t > ¢° /r* cosets Wy, such that
AN W] > ——[Wal
[04 r + 1 al»
and since the dimension of Wy is no = n(1/(r+1),k,q) each such ANW, must contain an affine k-space
ag +Ugq,

Where Uy, is a k-dimensional vector subspace of W,,.
Since there are exactly e distinct k-dimensional vector subspaces of Wy at least d/e of the k-spaces
aq + Uy must have the form ay + U for a fixed U. Let these be

a+U,...,a,+ U,

where h > d/e.
Let A’ = {ay,...,a;}. Then

S
A =h>dfe> L = g = 5|V
er

ghe 2

Since the dimension of V is ng+s > s = n(8,1,q), there must be an affine line in A’. By renumbering if
necessary we can assume that this line is {ay,...,a,}.
It is now easy to check that
U'=(a1+U)U---U(ag+U)

is an affine (k + 1)-space contained in A. Since A was an arbitrary subset of V with |A| > (1/r)|V| this
shows that
n(1/r,k+1,q) <ng+s=dimg, (V)

as claimed. This finishes the proof of the lemma. O

Theorem 1 now follows immediately from the lemma by induction. Indeed, we are given in the
hypotheses of the theorem that n(€, 1, ¢q) exists for all € > 0. If n(€,k,q) exists for all &, then it exists for
€ =1/r. By the lemma, n(e,k+ 1,q) exists for all € > 0. Theorem | now follows by induction on k.

The proof of Theorem 3 is identical; we merely replace n(€,k,q) with n” (€, k,t).

To prove Theorem 2 for odd ¢ we first observe that n’ (g, 1, q) exists for all € > 0 as a consequence of
the main result in [2]. For this case Theorem 2 follows from the lemma and induction as above.

To prove Theorem 2 for even g we observe that a (3, k)-lattice is just a (2,k)-lattice since 2 = 0 in
IF,. It then follows that n’ (€, 1,¢) exists since any two elements of an abelian group form a (2, 1)-lattice.
The rest of the proof is as above. (An upper bound for n'(€,k,q) for even g can also be deduced from

Lemma 1 in [2].)

Note added in proof. The lemma can be easily improve to show that n(1/rk+1,q) < n(1/(r+
1),k,q) +n(1/(er’),1,q).
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