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Abstract

For s � 2, t � 1, let A1; : : : ;At be s-cell partitions of a finite set X . Assume that if x;y 2 X , x 6= y,

then x;y belong to different cells of at least one of the partitions Ai. For each k � 1, let c(s; t;k) be

the least integer such that if A1; : : : ;At , X satisfy the preceding conditions, and the smallest of all the

cells of all the partitions has exactly k elements, and jX j � c(s; t;k), then A1; : : : ;At have a common

transversal. The functions b(s; t;k) are defined analogously, except that now the smallest of all the cells

of all the partitions is only required to have at least k elements. Thus b(s; t;1) involves no restriction

on the sizes of the cells of the partitions. Note that b(s; t;1) = maxfc(s; t;k) : k � 1g.

We show, using essentially the method of Longyear [4], that

(1) c(s; t;1) = st � st�1� (s�1)t�1 +2, s � 2, t � 1, (s; t) 6= (2;2);

(2) c(s;3;s�1)� s3� s2� (s�1)2 + s, s � 2, t = 3;

(3) c(s; t;(t�1)(s�1)t�2)� (t�1)(t�2)(s�1)t�2 + s(s�1)t�1 +1, s � 2, t � 3, s � t�2;

(4) b(s;2; [(s+1)=2]) = 0, s � 2, t = 2;

(5) c(s; t;sk)� st � st�1� sk(s�1)t�k�1 + sk +1, s � 2, k � 0, t � k+2.

1 Introduction and definitions

The functions b(s; t;k) (defined above) were introduced by Longyear in [4], who showed, among other
results, that b(s;2;1) = s2�2s+3, s� 3.

The present author’s primary interest is in the determination of the values of the function b(s; t;1).
In this note we give a number of partial results in this direction, mostly in the form of lower bounds
obtained by various constructions. The exact values of b(s; t;1), s� 2, however, are still unknown for all
t � 3.

Throughout, A1; : : : ;At denote partitions of a finite set X , where each partition has s cells, s � 2. We
also assume that the partitions A1; : : : ;At separate points of X in the sense that if x;y 2 X , x 6= y, then x;y

belong to different cells of at least one of the partitions Ai.
For each i, 1 � i � t, we order the cells of Ai so that Ai = (A(i;1); : : : ;A(i;s)). Let P(s; t) be the set

of all t-tuples a1 � � �at , where each coordinate ai is a member of f1; : : : ;sg, 1� i� t.
Now define a mapping g from X into P(s; t) by setting, for each x 2 X ,

g(x) = a1 � � �at ; x 2 A(1;a1)\�� �\A(t;at):
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Then, since A1; : : : ;At separate the points of X , the mapping g is injective. Also, for 1 � i � t,
1� j � s,

A(i; j) = fx 2 X : the ith coordinate of g(x) is jg;

so that the partitions A1; : : : ;At can be recovered from g(X).
Hence, from now on we shall identify X with g(X), and work entirely with subsets of P(s; t). This

idea is due to Longyear.
Recall that a transversal of Ai is a set T of s elements of X , one element from each of the s cells of

Ai. A common transversal of A1; : : : ;At is a set T of s elements of X such that T is a transversal of each
Ai, 1� i� t.

A complementary set is a set D of s elements of P(s; t) such that for each i, 1 � i � t, the ith coordi-
nates of the elements of D run through f1; : : : ;sg in some order.

Note that the s-cell partitions A1; : : : ;At of X have a common transversal if and only if the subset
g(X) of P(s; t) contains a complementary set. Hence the functions c(s; t;k) and b(s; t;k) defined above
can be described as follows:

Let s; t be given, s � 2, t � 1. For a subset Q of P(s; t) and any i; j, where 1 � i � t, 1 � j � s, let
q(ai = j) be the number of elements of Q whose ith coordinate is j.

Then c(s; t;k) is the smallest integer with the following property. If Q is any subset of P(s; t) such that
jQj � c(s; t;k) and such that k = minfq(ai = j) : 1� i� t;1� j � sg, then Q contains a complementary
set. Similarly, b(s; t;k) is the smallest integer such that if Q is any subset of P(s; t) such that jQj � b(s; t;k)

and such that
k �minfq(ai = j) : 1� i� t;1� j � sg;

then Q contains a complementary set.
Note that c(s; t;k) is defined only for k � 1 (or else we may take c(s; t;0) = jP(s; t)j+ 1), whereas

b(s; t;k) is defined for all k � 0.
Also note again that b(s; t;k)� c(s; t;k) and that b(s; t;1) = maxfc(s; t;k) : k � 1g.

2 Results

The following lemma, which follows from simple counting, will be used repeatedly.

Lemma 1. The set P(s; t) contains s!t�1 complementary sets altogether, each element of P(s; t) belongs

to (s�1)!t�1 complementary sets, and each compatible pair of elements of P(s; t) belongs to (s�2)!t�1

complementary sets.

Theorem 1. (Longyear [4]). For s� 2, t � 1,

b(s; t;0) = st � st�1 +1:

Proof 1. (Longyear [4]). Let Q be a subset of P(s; t) with jQj � st � st�1 +1. Let B = P(s; t)�Q. Then
jBj � st�1�1, so by Lemma 1 B can intersect at most jBj(s�1)!t�1 complementary sets, and hence Q
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contains a complementary set. This shows that b(s; t;0)� st � st�1 +1. Now let Q = P(s; t)�B, where

B = fa1 � � �at 2 P(s; t) : a1 = 1g:

Then Q contains no complementary set, hence

b(s; t;0)� jQj+1 = st � st�1 +1:

Proof 2. We use induction on t, the case t = 1 being trivial. Assume the result for a given t � 1, and let Q

be a subset of P(s; t +1) with jQj � st+1� st +1. For each h, 0� h� s�1, let Bh = fa1 � � �atat+1 2 Q :
at+1�at � h (mod s)g. Then Q is the disjoint union of the sets Bh, hence (re-numbering if necessary) we
may assume that jB0j � st � st�1 +1. Now let Q0 = fa1 � � �at : a1 � � �atat 2 B0g. Since jQ0j= jB0j, the in-
duction hypothesis implies that Q0 contains a complementary set D0. Then Q contains the complementary
set D = fa1 � � �atat 2 D0g.

Theorem 2. For s� 2, t � 1, (s; t) 6= (2;2),

c(s; t;1) = st � st�1� (s� t)t�1 +2:

Proof. When t = 1 there is nothing to prove. Hence assume that t � 2 and let Q be a subset of P(s; t)

such that jQj � st � st�1� (s�1)t�1 +2 and such that 1 = minfq(ai = j) : 1� i� t;1� j � sg, where,
as before, q(ai = j) is the number of elements of Q whose ith coordinate is j. Let B = P(s; t)�Q, and
assume without loss of generality that 1 = q(a1 = 1), and that B = B1 [B2, where B1 = fa1 � � �at 2

P(s; t) : a1 = 1g�f11 � � �1g and B2 = B�B1. Now jBj � st�1 +(s�1)t�1�2, and jB1j = st�1�1, so
jB2j � (s� 1)t�1 � 1. The set B1 meets every complementary set in P(s; t) except for the (s� 1)!t�1

complementary sets which contain the t-tuple 11 � � �1. The set B2 can meet at most jB2j(s� 2)!t�1 of

these. (The complementary sets containing 11 � � �1). Since jB2j(s�2)!t�1 < (s�1)1t�1, it follows that
Q contains a complementary set, and hence that c(s; t;1)� st � st�1� (s�1)t�1 +2.

For the reverse inequality let Q = P(s; t)� (B1[B2), where B1 is as above and

B2 = fa1 � � �at 2 P(s; t) : a1 = 2;ai 6= 1;2� i� tg:

Then B1[B2 meets every complementary set, hence Q contains no complementary set, and 1 = q(a1 =

1) = minfq(ai = j) : 1 � i � t;1 � j � sg (except in the single case s = t = 2, when q(a2 = 2) = 0).
Therefore c(s; t;1)� jQj+1 = st � st�1� (s�1)t�1 +2, s� 2, t � 1, (s; t) 6= (2;2).

Remark. For the case t = 2, Longyear showed using Hall’s theorem [2] that b(s; t;1) = s2 � 2s+ 3,
s� 3. Thus (checking the case s = t = 2 separately, where we find b(2;2;1) = 2 = c(2;2;1))

b(s;2;1) = c(s;2;1); s� 2:

Theorem 3. For s� 2, t = 3,

c(s;3;s�1)� s3� s2� (s�1)2 + s:
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Proof. Let Q be the set of all triple of the form 1a21;a111;a1a2b, where 2� a1 � s, 2� a2 � s, 1� b� s.
Then Q contains no complementary set and s�1 = a(a1 = 1) = minfq(ai = j) : 1 � i � 3;1 � j � sg,
hence c(s;3;s�1)� jQj+1 = 2(s�1)+(s�1)2s+1 = s3� s2� (s�1)2 + s.

Remark. Since b(s;3;1)� c(s;3;s�1), and s3�s2�(s�1)s+s = c(s;3;1)+(s�2), Theorem 3 gives
b(s;3;1) � c(s;3;1)+ (s� 2). Thus b(s;3;1) > c(s;3;1), s > 2. This is the only known case where
b(s; t;1)> c(s; t;1).

Theorem 4. For s� 2, t � 3, s� t�2,

c(s; t;(t�2)(s�2)t�2)� (t�1)(t�2)(s�1)t�2 + s(s�1)t�1 +1:

Proof. We generalize the contruction used in Theorem 3. Let Q be the set of all t-tuples of the form
1a2a3 � � �at�1b, a11a3 � � �at�1b, a1a21a4 � � �at�1b, . . . , a1a2 � � �at�21b, a1a2 � � �at�2at�1c, where 2� a1; : : : ;at�1 �

s, 1� b� t�2, 1� c� s. Then Q contains no complementary set and it is easy to check that

(t�2)(s�1)t�2 = q(a1 = 1) = minfq(qi = j) : 1� i� t;1� j � sg;

hence
c(s; t;(t�2)(s�2)t�2)� jQj+1 = (t�1)(t�2)(s�1)t�2 + s(s�1)t�1 +1:

Corollary. Setting s = t gives

c(s;s;(s�2)s�2 � 2(s�1)s +1; s� 3:

Theorem 5. For s� 2,

b(s;2; [(1=2)(s+1)]) = 0:

(That is, if Q is any subset of P(s;2) with q(ai = j)� (1=2)(s+1), 1� i� 2, 1� j � s, then Q contains

a complementary set.)

Proof. The s� s 0-1 matrix corresponding to Q has at least (1=2)(s+ 1) 1’s in each row and column.
Any collection of s� 1 rows and columns must contain fewer than (1=2)(s + 1) rows or fewer than
(1=2)(s+1) columns, and hence cannot cover all the 1’s. Hence by König’s theorem, there are s 1’s, no
two in the same row or column, and therefore Q contains a complementary set. (An alternative proof can
be given using Hall’s theorem.)

Remark. For 1� k � [(1=2)(s�1)], let Qk be the subset of P(s;2) consisting of all pairs ab;cd, where
1 � a � k+1, 1 � b � k, k+2 � c � s, 1 � d � s. This construction shows that c(s;2;k)� jQkj+1 =

(k+1)k+(s� k�1)s+1. (For k = 1, s 6= 2, equality holds by Theorem 2.)

Theorem 6. For s� 2, k � 0, t � k+2,

c(s; t;sk)� st � st�1� sk(s�1)t�k�1 + sk +1:
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Proof. When k = 0 equality holds by Theorem 2. Hence assume k � 1, and let B = B1[B2, where

B1 = fa1 � � �at 2 P(s; t) : a1 = 1g�fa1 � � �at 2 P(s; t) : a1 = � � �= at�k = 1g

B2 = fa1 � � �at 2 P(s; t) : a1 = 2;a2; � � � ;at�k 6= 1g:

Then B1 meets every complementary set in P(s; t) except for those met by fa1 � � �at 2 P(s; t) : a1 = � � �=

at�k = 1g, and each of these remaining complementary sets is met by B2, therefore Q = P(s; t)�B

contains no complementary set. When t � k+2, it is straightforward to check that

sk = q(a1 = 1) = minfq(ai = j) : 1� i� t;1� j � sg;

and hence

c(s; t;sk)� jQj+1 = st � st�1� sk(s�1)t�k�1 + sk +1; s� 2;k � 1; t � k+2:

3 Remarks, questions, and conjectures

(1) Perhaps Proof 2 of Theorem 1 could be modified so as to give a result concerning b(s; t;k) for k > 0.
(2) The construction of Q in Theorem 6 seems very ‘efficient’. Perhaps equality holds for all k, and

not just for k = 0.
(3) The construction which gives b(s;3;1) > c(s;3;1), s > 2 (Theorem 3) fails to give b(s; t;1) >

c(s; t;1) for any t > 3 (proof of Theorem 4). It would be interesting to know if t = 3 is any exceptional
case, or if b(s; t;1)> c(s; t;1), s > 2, for all t � 3. (If the latter holds, then t = 2 is an exceptional case.)

(4) Let Q(s) be the subset of P(s;s) constructed as in the proof of Theorem 4, with s = t. Then
Q(s) is a ‘homogeneous’ subset of P(s;s) in the following sense. For each i; j, call the set fa1 � � �as 2

P(s;s) : ai = jg a hyperplane. Then for every hyperplane H(s) of P(s;s), either jQ(s)\H(s)j= (1=e+

o(1))jH(s)j or jQ(s)\H(s)j= (2=e+o(1))jH(s)j (as s! ∞). Note that jQ(s)j= (2=e+o(1))jP(s;s)j.

Conjecture. For every ε > 0 there exists n(ε) such that if s � n(ε) and Q is any subset of P(s;s) such
that jQ\Hj> (1=e+ ε)jHj for every hyperplane H of P(s;s), then Q contains a complementary set.

(5) For s� 2, t � 1, define d(s; t) to be the smallest integer h with the property that if Q is any subset
of P(s; t) such that h � minfq(ai = j) : 1 � i � t;1 � j � sg, then Q contains a complementary set. (In
terms of partitions and transversals, d(s; t) is the smallest integer h with the property that if A1; : : : ;At are
s-cell partitions of the finite set X which separate the points of X , and the smallest of all the cells in all
the partitions has at least h elements, then A1; : : : ;At have a common transversal.)

Theorem 5 (and the Remark following) shows that d(s;2) = [(1=2)(s+ 1)]. It would be interesting
to find d(s; t), or any upper bound for d(s; t), for t > 2.

(6) Perhaps the most interesting of all the open questions is simply this: What is b(s;3;1)?
(7) Recently Livingston [3] has shown the following:

c(s; t;k) = sk� st�1� (s�1)t�1 + k+1; 1� k � s�1;s� 4; t � 3;

c(s; t;k) = st � st�1� s(s�1)t�1 + k+1; s� k � s(s�1);
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and either s� 4 and t � 4, or s = k and t = 3.
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