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Abstract
The multiset P = {ay,...,a;} is a k-term arithmetic progression modulo n if a; # a» (mod n)
and ap —ay =a3 —ap =+ = ay — a1 (mod n). For k odd and k& > 3, we find explicit constnats

& < 1—1/k such that for any n # k and for any subset A of [0,n — 1], if |A| > &n then A contains a

k-term arithmetic progression modulo n. (€3 = .5 and &5 is about .77.)

1 Introduction

For each real number € > 0 and positive integers k and ny, let S(€,k,np) denote the following statement.
S(&,k,ng): For every n > ny, and for every subset A of [0,n— 1], if |A| > &n then A contains a k-term
arithmetic progression.
Then Szemerédi’s theorem [2] asserts that for every € > 0 and k, there exists a least positive integer
no = no(&,k) such that S(&,k,np) holds.
One can ask the following quantitative questions. (Answering them, of course, is something else!)
(a) Given € > 0 and k, what is no(€, k), that is, what is the smallest ny such that S(g,k,ng) holds?
(b) Given k and ng, what is the smallest € such that S(&,k,n9) holds? (We may denote this smallest
e by e(k,np).)
These questions appear to be simplified if for a given n and a given subset A of [0,7 — 1] we enlarge
the set of arithmetic progressions under consideration. Thus we say that A contains a k-term arithmetic

progression modulo n if A contains elements ay, . .. ,a;—; (not necessarily distinct) such that
aj=ap+jd (modn), 0<j<k-I,

for some integer d with
d Z 0(mod n).

We can replace statement S(&,k,ng) by the corresponding statement M (€', k,nj,), for any real number

€' > 0 and positive integers k and g, as follows.



M(€',k,np): For every n > nj, and for every subset A of [0,n — 1], if |A| > €'n then A contains a
k-term arithmetic progression modulo 7.

One can then ask the following questions.

(a’) Given €' > 0 and k, what is nj (€, k), the smallest n;, such that M (&', k,nj,) holds?

(b’) Given k and ny,, what is €’(k,n;), the smallest €’ such that M(€’, k,n;) holds?

In this note we obtain bounds what appear to be the easiest cases of these latter two questions.
Given a small € > 0 (namely € < %) and arbitrary k, we find a lower bound for n,(&,k). (Theorem I
below). Given a small n{, (namely nj = k + 1) and arbitrary odd k, we find an upper bound for €’(k, n;).
(Theorem 2 below).

Remark 1. It has been observed in [ 1] that Szemerédi’s theorem is equivalent to the following statemtn:

For every €’ > 0 and k, there exists a least positive integer n;, such that M (€', k,n{;) holds.

(In fact,
1 1
ny(&,k) < no(e,k) < 5n(’)(s/Z,k) +3

To obtain the second inequality, let 2m > nj(€/2,k), and let A be any subset of [0,m — 1] such that
|A| > em = (£/2)(2m). Then regarding A as a subset of [0,2m — 1] it follows from the choice of 2m
that A contains a k-term arithmetic progression modulo 2m. Since A is a subset of [0,m — 1], this k-term

arithmetic progression modulo 2m is in fact a k-term arithmetic progression. Hence ng(&,k) < m.)
Remark 2. It is trivial that for any k and n), €'(k,n) < 1—1/k.

(Forif A C [0,n—1] and |A| > (1 — 1/k)n, then the average value of |AN[i,i+ k— 1]| is greater than
1 —1/k, hence for some i, A contains i,i+1,...,i+k— 1 (modulo n). Note, however, that this argument
fails for £(k,np): A ={0,1,3} C [0,3] and |A| > (1 —1/3) -4, but A contains no 3-term arithmetic

progression.)

2 Results

From now on, we abbreviate “k-term arithmetic progression" to “k-progression”.

Theorem 1. Fors > 2k > 3,
ny(1/s,k) > V25% — 2541 (1)

Proof. Fix s> 2 k>3, and consider the (m+ 1)-element subsets of [0, ms]. Note that m+1> (1/s) (ms+
1), so that if one of these subsets contains no k-progression modulo ms + 1, then ng(1/s,k) > ms+ 1.

Given a fixed k-progression P (modulo ms + 1) in [0,ms], the number of (m + 1)-element subsets

ms+1—k

of [0,ms] which contain P is at most ( ) The total number of distinct k-progressions P (modulo

m+1—k
ms+ 1) in [0,ms] is at most (ms + 1) (ms) /2. Therefore
ms+1—k ms—+ 1
1 2 2
<m+1—k>(ms+ ) (ms) /2 < <m+1> @
implies
ny(1/s,k) > ms+1. 3)



When m+ 1 > k, (2) is equivalent to
ms—1 ms—2 ms—k+2
1)<2- . 4
mim+1) < (m—l)(m—Z) (m—k+2>’ @

and each factor on the right hand side of (4) is greater than s. Therefore when m + 1 > k, (2) holnds
provided m(m + 1) < 2-s72, which in turn holds provided (m+ 1)> <2552, or

m< V25K 1. 5)

Now when k < v/2s%/2~1 we can find an integer m such thatk <m+1 < V2552V and m > /25421 =2,
which gives (1).

Only a small number of pairs (s,k) have k > v/2s*/>~! (namely (s,k) = (2,3), (2,4), (2,5), (2,6),
(3,3), (4,3)), and these can be checked separately, giving (1) in all cases. O

Theorem 2. Define the numbers €, for odd k > 3, as follows. Let €3 =1/2. Fork=2m+1, m > 2, let

k+1 k+2
R SR
& k+2 (\/m Tl m) ©

Then & < 1 —1/k, and for every n # k and every subset A of [0,n— 1], if |A| > &n then A contains a

k-progression modulo n.
Lemma 1. In proving Theorem 2, we may assume that n > k.

Proof of Lemma 1. For k = 3, the assertion of the lemma is obviously true. For k > 3, one can check that
& > 1—1/(k—1). From this it follows that if n < k and A is any subset of [0,n — 1] such that |A| > &n,

then A = [0,n — 1] and hence A contains a k-progression modulo n. O
Lemma 2. In proving Theorem 2, we may assume that n is prime.

Proof of Lemma 2. Assume that if p is prime, A C [0, p — 1],

A| > &p, then A contains a k-progression
modulo p. Now let n be arbitrary, let A C [0,n— 1], |A| > &n, and let p be a prime divisor of n. Identify
[0,n — 1] with the cyclic group Z,. Then Z, contains a copy H of Z,, and for some coset a + H of H,
[AN(a+H)| > &H, or

[(A—a)NH| > &p. @)

Therefore A — a contains a k-progression as a subset of H; since H is a subgroup of Z,, this k-progression
is a k-progression as a subset of Z,. O

Remark. The same argument shows that in Theorem 2, Z, can be replaced by an arbitrary abelian group,
except for Z, X --- x Z, when k = p =prime. In particular, Theorem 2 is true even for n = k, provided &

is not prime.

Proof of Theorem 2. Case 1. The case k= 3. Let p be prime, p >3, A C [0,p— 1],
sume that A contains no 3-progression modulo p. We need to show that o < 1/2.

A| = ap, and as-



For each pair x,x+y (y # 0) of elements of A, the (distinct) elements w; = x—y, wp = x+ 2y
are excluded from A, since A contains no 3-progression modulo p. (All arithmetic operations here are
modulo p.)

Also, given distinct elements wy,w; in [0, p — 1], there are unique x,y (y # 0) in [0, p — 1] such that
x—y=wp and x+ 2y = w».

It easily follows that each excluded pair {wj,w,} is excluded only once, so that the (0‘2" ) pairs of
clements of A exclude (%) distinct pairs {w;,w>} from A. The union of these (%) distinct pairs of
elements has at least ap elements.

Thus ap =|A| < p— ap, and a < 1/2, as required. O

Case 2. The case k > 3. From now on, for convenience, we abbreviate “k-progression modulo p" to “k-
progression”.
Letk=2m+1, m> 2. Let p be prime, p >k, A C [0,p — 1],

A| = ap, and assume that A contains
no k-progression.

We need to show that o < &. (One can check directly that g < 1 —1/k. &5 is about 0.77.)

The argument proceeds essentially as in the case k = 3:

Each (k — 1)-progression contained in A eliminates a pair {w;,w;} of elements from A, and each
eliminated pair {w;,w} is eliminated exactly once.

Let ¢ be the number of (k — 1)-progressions contained in A. Then the union of the ¢ excluded pairs
{w1,w,} has at least w elements, where w is the smallest integer such that (g) >t. Then w > \/Z SO
that op = |A| < p—+/2t, or

(1—a)?p? > 21 ®)

Now we estimate ¢ from below. The set [0, p — 1] — A contains (1 — o) p elements, and each of these
belong to exactly m(p — 1) (k— 1)-progressions. Thus [0, p — 1] — A meets at most (1 — o) pm(p—1)
(k — 1)-progressions. Since the total number of (k — 1)-progressions contained in [0, p — 1] is exactly
p(p—1)/2, it follows that

t>plp—1)/2-plp—1)(1—a)m,

or
262 p(p—1)(1—(1—a)2m). )
Combining (9) and (8) gives
(1-a)?

Since p > k+2 = 2m+ 3, this gives

(1—a)? 1
>1-— . 11
I1—(1-—a)2m 2m+3 an
Using a < 1, it follows from (11) that @ < €, as required. O
O



(When k is even, all of the above remains valid except for g, < 1 —1/k. Hence, according to Remark 2
above, the application of this method for even k gives no result. Perhaps some modified version of this
method will work for even k.)
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