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Abstract

Let k and n be positive integers, and let d(n;k) be the maximum density in f0;1;2 : : : ;kn�1g of a

set containing no arithmetic progression of k terms with first term a = ∑aiki and common difference

d = ∑εiki, where 0 � ai � k� 1, εi = 0 or 1, and εi = 1 ) ai = 0. Setting βk = limn!∞ d(n;k), we

show that limk!∞ βk is either 0 or 1.

Throughout, we shall use the notation [a;b) = fa;a+ 1;a+ 2; : : : ;b� 1g, for nonnegative integers
a < b. Also, if S is a set of nonnegative integers, then S(m) denotes jS\ [0;m)j.

The upper asymptotic density of S will be denoted by d̄(S). Thus

d̄(S) = limsup
m!∞

m�1S(m):

Similarly, the lower asymptotic density of S is

d(S) = liminf
m!∞

m�1S(m):

Let rk(n) denote the largest cardinal of a subset A of [0;n) such that A contains no arithmetic progression
of k terms, and let ρk = limn!∞ n�1rk(n). (This idea was introduced by Erdős, Turán, and Szekeres
in [3], and then convergence of n�1rk(n) is shown in [2].) K. F. Roth [6] proved ρ3 = 0 in 1953 and E.
Szemerédi [8] has shown that ρk = 0 for all k.

Previous to these results, Felix Behrend [2] proved in 1937 that limk!∞ ρk equals either 0 or 1. In
this paper we prove the analogous result where ρk is replaced by βk, the definition of βk being similar to
that of ρk except that only arithmetic progressions of a certain type are considered. (At the time of this
writing, the only known values for βk are β1 = β2 = 0.) The main idea for the proof is taken diresctly
from Behrend’s paper.

Definition. For each positive integer k, a k-diagonal is an arithmetic progression on k terms with first
term a = ∑aiki and common difference d = ∑εiki, where for each i, 0 � ai � k� 1, εi = 0 or 1, and
εi = 1) ai = 0.
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Note that k integers form a k-diagonal if and only if their k-ary representations can be put into the
rows of a matrix in such a way that each column of the matrix, reading from top to bottom, is either
iii � � � i, for some i depending on the column, or 012 � � �k�1. For example, f2;5;8g is a 3-diagonal which
contains no 2-diagonal.

Definition. For positive integers n;k; let

d(n;k) = k�njAj;

where A is a subset of [0;kn) which has largest cardinal while not containing any k-diagonal.

Thus for each fixed, k, we consider only the intervals [0;kn), n = 1;2; : : : ;, the reason for this is that
we can think of [0;kn) as the set of all n-tuples on the k symbols 0;1; : : : ;k� 1, which seems to be an
advantage.

The following lemma is proved in [1].

Lemma 1. For each fixed k, fd(n;k)g∞
n=1 decreases. For each fixed n, fd(n;k)g∞

k=1 increases.

Using this lemma, we can make the following definition.

Definition.

βk = lim
n!∞

d(n;k); for k = 1;2; : : : .

β = lim
k!∞

βk:

Note that 0� β1 � β2 � β3 � �� � � β � 1.
As remarked earlier, our object is to prove that β is 0 or 1. We also remarked that the only currently

known values of βk are β1 = 0 and β2 = 0. The first follows directly from the definition of β1. The second
follows from observing that if A � [0;2n) then we may regard the elements of A (in binary notation) as
characteristic functions of subsets of f1;2; : : : ;ng. It is then easy to see that A contains a 2-diagonal fx;yg

if and only if ther corresponding subsets X and Y of f1;2; : : : ;ng satisfy X �Y or Y � X . It then follows
by Sperner’s lemma that if A has no 2-diagonal then jAj �

� n
bn=2c

�
, and therefore d(n;2) = 2�n

� n
bn=2c

�
! 0

as n! ∞, that is, β2 = 0.

Lemma 2. If S is a set of nonnegative integers with upper density d̄(S) > βk, then S contains a k-

diagonal.

Proof. Let ε > 0 be such that m�1S(m) > βk + ε for infinitely many m. Choose n so that d(n;k) <

βk + ε=2, and now choose m so that βk + ε < m�1S(m) and m�1kn < ε=2. Finally, choose b so that
bkn �m < (b+1)kn. If S contains no k-diagonal, then in any interval [akn;(a+1)kn) S can have density
at most d(n;k), that is,

jS\ [akn;(a+1)kn)j � knd(n;k):

Therefore S(m)� S(bkn)+ kn � bknd(n;k)+ kn, hence

βk + ε < m�1S(m)� d(n;k)+m�1kn < βk + ε=2+ ε=2:
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Therefore S contains a k-diagonal.

Lemma 3. For each k there is a set S with d̄(S)� βk which does not contain a k2-diagonal.

Proof. Choose positive integers n1 < n2 < � � � such that ni+1� ni ! ∞. For each i, let Ai � [0;kni) be
such that Ai contains no k-diagonal and jAj= knid(ni;k). Let Bi = Ai\ [2kni�1 ;kni), and let S =

S
∞
i=1 Bi.

Then k�niS(kni) � k�ni(knid(ni;k)� 2kni�1)! βk (we may assume k � 2 since β1 = 0), hence S has
upper density βk.

Now because of the size of the gaps between successive blocks Bi, no arithmetic progression can
intersect more than two of the Bi’s. In particular, if S contains a k2-diagonal D, then either the first k

elements of D belong to some Bi, or the last k elements of D belong to some B j (or both). But the first
k elements of a k2-diagonal constitute a k-diagonal, and similarly for the last k elements. Since no Bi

contains a k-diagonal, S can contain no k2-diagonal.

Lemma 4. (a) If D = fai : i 2 [0;kpn)g is a kpn-diagonal and J � [0;kpn) is a kn-diagonal then D0 =

fa j : j 2 Jg is a kn diagonal.

(b) If D is a kn-diagonal and ` 2 [0;kn) is fixed, then D0 = fkna+ ` : a 2 Dg is a kn-diagonal.

Proof. (a) Express each element of D in kpn-ary notation, so that D = fX1iX2i � � � iXd : i2 [0;kpn)g, where
each X j is a block (possibly empty) of kpn-ary symbols and i is a single kpn-ary symbol running from 0
to kpn�1. Replacing each kpn-ary symbols by its equivalent string of p kpn�1-ary symbols, we obtain
D = fX 0

1i0X 0
2i0 � � � i0X 0

d : i 2 [0;kpn)g, where each X 0
j is a block of kn-ary symbols and i0 is a block of p

kn-ary symbols running from 0 to kpn�1. It is now clear that if J is a kn-diagonal contained in [0;kpn)

then so is D0 = fX 0
1 jX 0

2 j � � � jX 0
d : j 2 Jg.

(b) If D = fX1iX2i � � � iXd : i 2 [�;kn)g (each element of D is expressed in kn-ary notation), then
D0 = fX1iX2i � � � iXd` : i 2 [0;kn)g:

The following lemma is proved in [4] and [5].

Lemma 5. If k;c are positive integeres then there is an integer N(k;c) such that if m�N(k;c) and [0;m)

is partitioned in any way into c classes, then at least one class contains a k-diagonal.

We are now ready to prove the main theorem.

Theorem. β equals 0 or 1.

Proof. Suppose 0 < β < 1, and choose k so that βk � (1=β ) > βk2 . Next choose ε > 0 so that ε <
1
4 (βk�ββk2), and using Lemma 3 let S be a set of nonnegative integers with d̄(S)� βk which contains no
k2-diagonal. Next, choose n large enough that if A� [0;k2n) and jAj> (βk2 + ε)k2n then A must contain
a k2-diagonal. For each j = 0;1; : : : let B j = S\ [ jk2n;( j + 1)k2n). We now partition the nonnegative
integers j into 2k2n

classes as follows. For each σ � [0;k2n), j belongs to the class Cσ if and only if B j is
a translate of σ .

There are now two main steps in the proof. The first is to show that d̄
�S

σ 6=φ Cσ

�
> β ; the second is,

using this, to extract a k2-diagonal from S, contrary to our initial assumption.
To show that d̄

�S
σ 6=φ Cσ

�
> β , we will show that d(Cφ ) < 1� β . Let d(Cφ ) = ξ , and choose m

so that Cφ (m) > (ξ � ε)m and S(mk2n) > (βk� ε)mk2n. Then
�S

σ 6=φ Cσ

�
(m) < (1� ξ + ε)m, and for

every j, jB jj � (βk2 + ε)k2n.
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Hence

S(mk2n) =

������
[
8<
:B j : j 2 [0;m)\

0
@[

σ 6=φ

Cσ

1
A
9=
;

������
< (βk2 + ε)k2n � (1�ξ + ε)m;

hence
βk� ε < (βk2 + ε)(1�ξ + ε);

ξ � [(1+ ε)(βk2 + ε)�βk + ε]=(βk2 + ε)

< (βk2 �βk +4ε)=βk2 < 1�β ;

by the choice of ε . This completes the first step.
For the final step in the proof, choose by Lemma 5 an integer p large enough that if [0;k2pn) is

partitioned into 2k2n�1 classes, then at least one class will contain a k2n-diagonal. Since we now know
that d̄

�S
σ 6=φ Cσ

�
> β � βk2pn , it follows from Lemma 2 that

S
σ 6=φ Cσ contains a k2pn-diagonal D = fai :

i 2 [0;k2pn)g. Let us now partition the indices i of the elements of D into classes C0
σ according to the rule

i 2C0
σ , ai 2Cσ . Then by the choice of p there is a k2n-diagonal J � [0;k2pn) which is contained in a

single class, say J �C0
σ0

. This means that D0 = fa j : j 2 Jg. is contained in Cσ0 . But by Lemma 4(a),
D0 is a k2n-diagonal. Thus we now have that the k2n sets Ba j = S\ [a jk2n;(a j + 1)k2n), j 2 J, are all
translates of σ0, and D0 = fa j : j 2 Jg is a k2n-diagonal. Since σ0 6= φ , we may choose ` 2 σ0. Then
D00 = fk2na j + ` : j 2 Jg � S, and by Lemma 4(b) D00 is a k2n-diagonal. But then the first k2 elements of
this k2n-diagonal are a k2-diagonal in S, contrary to assumption.

Thus the proof is complete.
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