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Abstract

In this note we prove that there is a linear ordering of the set of real numbers for which there is no

monotonic 3-term arithmetic progression. This answers the question (asked by Erdős and Graham) of

whether or not every linear ordering of the reals must have a monotonic k-term arithmetic progression

for every k.

1 Introduction.

Over the last few years there has been an increasing interest in combinatorial properties of linear order-
ings, also called infinite permutations, of various sets of real numbers. See for example [1, 5, 7, 8].

In this note, answering a question of Erdős and Graham [4, pp. 21–22], we show that there is a linear
ordering � of the set R of real numbers which has no monotonic 3-term arithmetic progression (AP).
This means that there do not exist distinct real numbers x and y such that x � 1

2 (x+ y) � y. We call
such an ordering chaotic. In general, for any set X � R, a linear ordering � of X is chaotic if there do
not exist distinct x;y;z 2 X such that y = 1

2 (x+ z) and x� y� z.
Symbols such as “<" or “�" always refer to the usual order relation on R.
Our methods show that for every k � 2 there is a linear ordering of R for which there are monotonic

k-term AP’s, but no monotonic (k+ 1)-term AP. A monotonic k-term AP in R (monotonic with respect
to an ordering �) is a set fai : 0 � i � k� 1g with ai = a0 + id, 0 � i � k� 1, d 6= 0, such that
a0 � a1 � ��� � ak�1.

It has long been known that there are chaotic linear orderings of f1;2; : : : ;ng for every positive integer
n [3, 6, 9–11], but that for any arrangement of the positive integers into a sequence a1;a2; : : : , or even
a doubly-infinite sequence : : : ;a�2;a�1;a0;a1;a2; : : : , there does exist a monotonic 3-term AP, that is,
there are i < j < k such that a j =

1
2 (ai+ak) [2]. It is a well-known open question whether every sequence

a1;a2; : : : which contains each positive integer exactly once must contain a monotonic 4-term AP. It is
known that such a sequence need not contain a monotonic 5-term AP [2].

We start by constructing an explicit chaotic linear ordering of Z, the set of integers. (Our method
is similar to that of T. Odda [9].) This ordering of Z has 0 as its smallest element and �1 as its largest
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element. We then use König’s infinity lemma to obtain a chaotic linear ordering of Q, the set of rational
numbers. Finally, we use the axiom of choice (in the form “every vector space has a basis") to obtain a
chaotic linear ordering of R. It would be of interest to know whether such an ordering can be constructed
without using the axiom of choice.

For distinct real numbers a1;a2; : : : ;an we write ha1;a2; : : : ;ani to denote the ordering � on the
set fa1;a2; : : : ;ang in which a1 � a2 � �� � � an. If A = ha1;a2; : : : ;ani and k is a real number, then
A + k denotes the ordering ha1 + k;a2 + k; : : : ;an + ki, and for a nonzero k, kA denotes the ordering
hka1;ka2; : : : ;kani. For disjoint sets fa1;a2; : : : ;ang and fb1;b2; : : : ;bmg, if A = ha1;a2; : : : ;ani and B =

hb1;b2; : : : ;bmi, then AB denotes the ordering ha1;a2; : : : ;an;b1;b2; : : : ;bmi.

2 A chaotic ordering of Z

Definition 2.1. Define the ordering An on [�2n�1;2n�1�1], n � 1, inductively by setting A1 = h0;�1i
and An+1 = (2An)(2An +1).

Thus A2 = h0;�2;1;�1i and A3 = h0;�4;2;�2;1;�3;3;�1i.

Lemma 2.1. (i) Each An is chaotic, n� 1. (This means that if a;b;c 2 [�2n�1;2n�1�1] and a+c = 2b,

then b cannot lie between a and c, in the ordering An.)

(ii) Each An+1 extends An, n � 1. (This means that the numbers �2n�1, �2n�1 + 1,: : : ;2n�1 � 1
appear in An+1 in the same order that they appear in An.)

Proof. (i) Clearly A1 is chaotic. Assume that n� 1 and that An is chaotic, that is, contains no monotonic
3-term AP. Then so are 2An and 2An + 1. Suppose a, b = a+ d, c = a+ 2d is a 3-term AP contained
in An+1 = (2An)(2An + 1). Since a and c have the same parity, a and c must both appear in 2An or in
2An + 1. But 2An and 2An + 1 are chaotic, and hence b cannot appear between a and c. Thus An+1 is
chaotic.

(ii) We see that A2 extends A1. Assume now that n� 2 and that An extends An�1. Then 2An extends
2An�1 and 2An + 1 extends 2An�1 + 1. Hence An+1 = (2An)(2An + 1) extends An = (2An�1)(2An�1 +

1).

Definition 2.2. The linear ordering <Z on Z is defined as follows. For all a;b 2 Z,

a <Z b, whenever a;b 2 [�2n�1
;2n�1�1]; a precedes b in An:

This definition makes sense in view of part (ii) of Lemma 2.1. Part (i) clearly implies the following
theorem.

Theorem 2.2. The linear ordering <Z of Z is chaotic.

3 A chaotic ordering of Q

Let Q = fr1;r2; : : :g be a fixed enumeration of Q, and for each n � 1 let Xn = fr1;r2; : : : ;rng. We can
produce a chaotic ordering of Xn by choosing k 2 N so that kXn � Z, restricting the ordering <Z of Z to
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kXn to give a chaotic ordering of kXn, and then dividing by k to give a chaotic ordering of Xn. Different
values of k may give different chaotic orderings of Xn. The essential point is that there exists at least one
chaotic ordering of Xn for each n� 1.

Construct a rooted tree T by letting the vertices at level n be the chaotic orderings of Xn, for each
n� 1. A vertex p at level n is adjacent to a vertex q at level n+1 if and only if q extends p.

Some branches of T may terminate. For example, 6 cannot be inserted into h2;4;3;0i.
By König’s infinity lemma, T has an infinite branch p1 � p2 � p3 � �� � ; where pn � pn+1 means

that the ordering pn+1 of Xn+1 = fr1;r2; : : : ;rn;rn+1g extends the ordering pn of Xn = fr1;r2; : : : ;rng.
The union of the chain of orderings p1 � p2 � p3 � �� � is a linear ordering of Q. Call this ordering

<Q. Thus by definition, for a;b 2Q

a <Q b, whenever a;b 2 Xn; a precedes b in pn:

Since each pn is a chaotic ordering of Xn, we have proved the following theorem.

Theorem 3.1. The linear ordering <Q of Q (defined above) is chaotic.

4 A chaotic ordering of R

Let B be a basis for the vector space R over the field Q. Let <Q be a chaotic ordering of Q. Extend <Q

to a linear ordering of R as follows. For distinct a;b 2 R write

a =
k

∑
i=1

aiγi and b =
k

∑
i=1

biγi;

where γ1;γ2; : : : ;γk 2 B, γ1 < γ2 < � � �< γk; and a1; : : :ak;b1; : : : ;bk 2Q.
Let j = minfi : 1� i� k and ai 6= big. Then we define the ordering <R on R by

a <R b, a j <Q b j:

We claim that <R is a chaotic ordering of R. (It is clearly a linear order.)
For suppose that a;b;c 2 R, a;b;c distinct, with a+ c = 2b. Write

a =
k

∑
i=1

aiγi, b =
k

∑
i=1

biγi, and c =
k

∑
i=1

ciγi;

where γ1;γ2; : : : ;γk 2 B, γ1 < γ2 < � � �< γk, ai;bi;ci 2Q, 1� i� k.
Note that since a+ c = 2b,

ai + ci = 2bi for each i; 1� i� k:

Let j = minfi : 1� i� k; and not all of ai;bi;ci are equalg. Then no two of a j, b j, c j are equal since
a j + c j = 2b j would imply that all three are equal.

Thus for 1� i� j�1, all three of ai, bi, ci are equal. Then a <R b <R< c implies that a j <Q b j <Q c j

in Q, which is not possible since <Q is a chaotic ordering of Q.
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This establishes our claim, and completes the proof of the following theorem.

Theorem 4.1. The linear ordering <R of R (defined above) is chaotic.

Note that in Theorem 4.1, R can be replaced by any field of characteristic 0.

5 Remarks

1. Definition 2.1 can be generalized by replacing 2 by k, for any k � 2. Fix k � 2. Define the permu-
tation Cn of [�(k�1)kn�1;kn�1�1], n� 1, inductively by setting C1 = h0;�1;�2; � � � ;�(k�1)i
and Cn+1 = (kCn)(kCn +1) � � �(kCn + k�1), n� 1.

All of the above arguments in Sections 2, 3, and 4 can now be repeated with little change, resulting
in a linear ordering of R with respect to which there is no monotonic (k+ 1)-term AP, but there
are monotonic k-term AP’s.

2. Let N denote the set of nonnegative integers, and for a;b 2N, let a = ∑
k
i=0 ai2i and b = ∑

k
i=0 bi2i,

ai;bi 2 f0;1g. From Definition 2.1, restricted to N, it is not hard to see that a <Z b if and only
if (a0;a1; : : : ;ak) precedes (b0;b1; : : : ;bk) in the standard lexicographic ordering of finite binary
sequences. It easily follows that

a <Z b,
k

∑
i=0

ai

2i <
k

∑
i=0

bi

2i :

Thus <Z, restricted to N, can be defined in terms of < :

3. The last equivalence suggests defining an explicit chaotic linear ordering <D of the set D of non-
negative dyadic rationals,

D=
n p

2n : p;n 2 N
o
:

For a;b 2 D, let a =
∞

∑
i=�∞

ai2i, b =
∞

∑
i=�∞

bi2i, ai;bi 2 f0;1g. Let

a� =
∞

∑
i=�∞

ai2�i and b� =
∞

∑
i=�∞

bi2�i
:

As remarked above, in case a;b 2 N then

a <Z b, a� < b�:

Now we define, for all a;b 2 D,
a <D b, a� < b�:

To see that <D is chaotic, for a;b 2 D choose q so that 2qa;2qb 2 N. Then (2qa)� =
1
2q �a

� and

a <D b, a� < b�,
1
2q �a

�

<
1
2q �b

�, (2qa)� < (2qb)�, 2qa <Z 2qb:
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Since <Z is chaotic, so is <D.

4. Note that the mapping φ from D to D defined by φ(a) = a�;a2D; is a bijection and, by definition,
a <D b if and only if φ(a)< φ(b) for all a;b2D. Thus, (D;<D) and (D;<) are order-isomorphic.

Since φ(N) = D\ [0;2) and φ(D\ [0;2)) = N, we have that (N;<D) and (D\ [0;2);<), as well
as (D\ [0;2);<D) and (N;<), are order-isomorphic.

Since <D and <Z agree on N, we conclude, as in Remark 2, that (N;<Z) and (D\ [0;2);<) are
order-isomorphic.
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